
CSE 452 – Winter 2020 Problem Set 3 DUE: 11:59pm March 11th

You are to work on the following questions alone. Do not discuss these questions with anyone.
Typeset your answers and submit as a PDF. The Bitcoin question is optional credit.

1. Answer the following questions about the ABD multi-writer, multi-reader register algorithm,
presented in Algorithm 1.

(a) (6 points) Recall Lamport’s safe, regular, and atomic register semantics. These were de-
fined in terms of single-write registers, but there is a natural way to extend these definitions
to multiple writers.
The ABD algorithm guarantees atomicity (linearizability). In this algorithm, both reads
and writes consist of two phases, which for the purposes of this question we’ll refer to as
the query phase and the store phase.
In the multi-write case, regularity implies that for some real-time respecting ordering of
writes, reads can return either the value written by the most recently completed write (in
the sequential ordering) or any of the values currently being written.
Suppose we only wanted to guarantee regular semantics as defined above. How could the
protocol be made more efficient?

(b) (4 points) Now suppose that we do want atomic register semantics, as in the original
protocol. What additional checks could you add to the ABD protocol to take advantage of
the optimization you made in part (a) in the “common” case?

(c) (8 points) Suppose the ABD algorithm is modified such that a write is sent speculatively
in the query phase (with a new timestamp) and that the store phase is skipped if the
speculative write succeeded at a majority. The modified algorithm is shown in Algorithm
2. The QUERY message handler on the server and the COMMUNICATE function in the
client were modified, and a field was added to the client. Does this protocol still provide
atomicity? If it does, briefly explain why. If not, provide a counter-example trace that
demonstrates the problem.

2. Answer the following questions about the BFT state machine replication algorithm presented
in the “Practical Byzantine Fault Tolerance” paper.

(a) (2 points) Can a client spoof a request such that it appears to have been initiated by a
different client? Briefly justify your answer.

(b) (2 points) Consider a faulty leader that ignores client requests. How does the algorithm
make progress as long as there are a sufficient number (2 f +1) of non-faulty replicas (and
sufficient network synchrony)?

(c) (2 points) Consider a faulty leader that sends different pre-prepare messages to different
nodes for the same slot, i.e., it tells some nodes that it has assigned a client command c1 to
a given slot and tells other nodes that it has assigned a client command c2 to the same slot.
How does the algorithm deal with this issue?

(d) (2 points) Assume that you have a faulty replica that received a pre-prepare message
assigning sequence number n to client request m. What happens if the replica sends a
prepare message associating a different sequence number n′ to the client request?

Page 1 of 4

CSE 452 – Winter 2020 Problem Set 3 DUE: 11:59pm March 11th

Algorithm 1 ABD MRMW Atomic Register Algorithm

Server local state:
t← (0,⊥) . Current timestamp, initially unique minimum value; lexicographically ordered
v←⊥ . Current value, initially special null value

1: upon receiving 〈QUERY〉
2: Send reply 〈QUERY-REPLY, t,v〉 . Messaging infrastructure correctly associates messages with replies
3: end upon

4: upon receiving 〈STORE, t ′,v′〉
5: if t < t ′ then
6: t← t ′

7: v← v′

8: end if
9: Send reply 〈STORE-REPLY〉 . Messaging infrastructure correctly associates messages with replies

10: end upon

Client local state:
p . Unique process ID, immutable

11: procedure READ
12: COMMUNICATE(⊥)
13: end procedure

14: procedure WRITE(v)
15: COMMUNICATE(v)
16: end procedure

17: function COMMUNICATE(v)
18: Send 〈QUERY〉 to all servers
19: Wait for

⌊ n
2

⌋
+1 replies, stored in R

20: t←max{m.t : m ∈ R} . Maximum timestamp out of replies seen
21: if v =⊥ then
22: v← m.v : m ∈ R∧m.t = t . Value associated with maximum timestamp
23: else
24: t← (t[0]+1, p)
25: end if
26: Send 〈STORE, t,v〉 to all servers
27: Wait for

⌊ n
2

⌋
+1 replies

28: end function

Page 2 of 4

CSE 452 – Winter 2020 Problem Set 3 DUE: 11:59pm March 11th

Algorithm 2 Modified MRMW Register Algorithm

Server local state:
t← (0,⊥)
v←⊥

1: upon receiving 〈QUERY, t ′,v′〉
2: if v′ 6=⊥∧ t < t ′ then
3: t← t ′

4: v← v′

5: end if
6: Send reply 〈QUERY-REPLY, t,v〉
7: end upon

8: upon receiving 〈STORE, t ′,v′〉
9: if t < t ′ then

10: t← t ′

11: v← v′

12: end if
13: Send reply 〈STORE-REPLY〉
14: end upon

Client local state:
p
t← (0,⊥) . Local timestamp

15: procedure READ
16: COMMUNICATE(⊥)
17: end procedure

18: procedure WRITE(v)
19: COMMUNICATE(v)
20: end procedure

21: function COMMUNICATE(v)
22: if v 6=⊥ then
23: t← (t[0]+1, p)
24: end if
25: Send 〈QUERY, t,v〉 to all servers
26: Wait for

⌊ n
2

⌋
+1 replies, stored in R

27: t ′←max{m.t : m ∈ R}
28: if v 6=⊥∧ t ′ = t then . Speculative write succeeded at a majority
29: return
30: else if v 6=⊥ then
31: t← (t ′[0]+1, p)
32: t ′← t
33: else
34: v← m.v : m ∈ R∧m.t = t ′

35: end if
36: Send 〈STORE, t ′,v〉 to all servers
37: Wait for

⌊ n
2

⌋
+1 replies

38: end function

Page 3 of 4

CSE 452 – Winter 2020 Problem Set 3 DUE: 11:59pm March 11th

(e) (2 points) Assume that you have a faulty replica. What happens when the replica sends an
incorrect response to the client?

(f) (6 points) The paper describes an alternative method to message authentication using what
they call authenticators. First, each pair of servers sets up a shared key at the beginning
of the execution. A message authentication code (MAC) for a message sent from s1 to
s2 is a string generated from the message text and the shared key between s1 and s2 that
proves that the sender of the message knew the shared key. An authenticator for a message
broadcast by s1 is a vector of MACs, one for each of the message’s recipients.
Suppose that checkpoint messages contained authenticators, rather than digital signatures,
and that servers only wait for f +1 matching checkpoints before garbage collection. (f +1
messages were sufficient when digital signatures were attached to checkpoint messages.)
What could go wrong?

3. (8 points) Consider a BigTable client whose cache is empty, i.e., it has never talked to a given
BigTable deployment before. Enumerate the requests it will make to read a single row with key
k from table T .

4. (8 points) Give one scenario where GFS’s “record append” would insert duplicate records at
the end of a file.

5. Answer the following about the Bitcoin protocol. This is optional credit.

(a) (5 points) Suppose that an attacker gains control of > 50% of the compute power currently
operating on the Bitcoin network. Could this attacker convince non-faulty observers that
improperly signed transactions are actually valid?

(b) (5 points) Suppose the difficulty were decreased dramatically so that the average rate of
block discovery was much higher than once every ten minutes. Further suppose that clients
proportionally increased the number of blocks deep they waited for a transaction to be
considered confirmed. What could go wrong?

(c) (5 points) Miners refuse to add invalid transactions (including transactions whose inputs
have already been spent) to their proposed block. What incentive does a miner have
to follow this procedure? Why doesn’t it just add the transaction to the block and let
consumers of the transaction log ignore invalid transactions at playback time?

Page 4 of 4

