You are to work on the following questions *alone*. Do not discuss these questions with anyone. Typeset your answers and submit as a PDF.

1. (10 points) Paxos Acceptor States

Consider a deployment of single-instance Paxos with three acceptors. Decide whether each of the following is a valid state of the three acceptors. If the state is not valid, explain why in one sentence. (Hint: A state is valid if there is some sequence of message deliveries and message drops and node failures that leads to the state, assuming a correct implementation of proposers and acceptors.)

For each part, we give you the highest accepted proposal at all three acceptors (A_1, A_2, A_3) at a single instance in time. Each acceptors highest accepted proposal is either in the form (n, v) where n is the proposal number (à la Paxos Made Simple) and v is a value or \bot which indicates that the acceptor has not accepted any proposal.

- (a) $A_1: \bot, A_2: \bot, A_3: \bot$
- (b) A_1 : $(1,x), A_2$: $(2,y), A_3$: \bot
- (c) A_1 : $(2,x), A_2$: $(2,y), A_3$: \bot
- (d) A_1 : (1,x), A_2 : (2,y), A_3 : (3,z)
- (e) A_1 : (1,x), A_2 : (2,x), A_3 : (3,x)

2. (10 points) Acceptor States in a Larger System

Consider a deployment with five acceptors. Is the following state valid? If it is valid, describe an execution that results in this state. If it is not valid, explain why.

$$A_1$$
: $(20,x)$, A_2 : \bot , A_3 : $(22,y)$, A_4 : $(20,x)$, A_5 : $(18,x)$

3. (10 points) A Dubious Execution

Consider another Paxos deployment with acceptors A_1 , A_2 , and A_3 , proposers P_1 , P_2 , and a distinguished learner L. According to the Paxos paper, a value is chosen when a majority of acceptors accept a proposal with that value, and only a single value is chosen. How does Paxos ensure that the following sequence of events cannot happen? What actually happens, and which value is ultimately chosen?

- P_1 prepares proposal number 1, and gets responses from A_1 , A_2 , and A_3 .
- P_1 sends (1,x) to A_1 and A_3 and gets responses from both. However, P_1 's proposal to A_2 was dropped. Because a majority accepted, P_1 informs L that x has been chosen. P_1 then crashes.
- P_2 prepares proposal number 2, and gets responses from A_2 and A_3 .
- P_2 sends (2, y) messages to A_2 and A_3 gets responses from both, so P_2 informs L that y has been chosen.

DUE: 11:59pm Feb 18th

4. (10 points) Paxos Liveness

In the absence of a distinguished proposer, it is possible for Paxos to fail to make progress even if no messages are dropped and no nodes fail. Briefly describe how this can happen in a system with two proposers and three acceptors. Be specific about which messages are sent and in what order they are delivered.

5. (10 points) Alternate Paxos Implementation

The *Paxos Made Simple* paper has the following definition in page 3.

A value is chosen when a single proposal with that value has been accepted by a majority of the acceptors.

Consider pursuing an alternate implementation based on the following definition.

A value is chosen when proposals with that value have been accepted by a majority of the acceptors.

Would the resulting implementation be correct? Justify your answer in a few sentences either with an informal proof or a scenario where this implementation would violate safety.