
Sharding

Scaling Paxos: Shards

We can use Paxos to decide on the order of operations,
e.g., to a key-value store

- leader sends each op to all servers

- practical limit on how ops/second

What if we want to scale to more clients?

Sharding among multiple Paxos groups

- partition key-space among groups

- for single key operations, still linearizable

State
machine

Paxos

Replicated, Sharded Database

State
machine

State
machine

Paxos

State
machine

Paxos

State
machine

Paxos

Replicated, Sharded Database

State
machine

State
machine

Paxos

State
machine

Paxos

Which keys are where?

State
machine

Paxos

Lab 4 (and other systems)

State
machine

State
machine

Paxos

State
machine

Paxos

Paxos

Shard master

Replicated, Sharded Database

Shard master decides

- which Paxos group has which keys

Shards operate independently

How do clients know who has what keys?

- Ask shard master? Becomes the bottleneck!

- Avoid shard master communication if possible

Can clients predict which group has which keys?

Recurring Problem

Client needs to access some resource

Sharded for scalability

How does client find specific server to use?

Central redirection won’t scale!

Another scenario

Client

Another scenario

Client

GET index.html

Another scenario

Client

index.html

Another scenario

Client

index.html
Links to: logo.jpg, jquery.js, …

Another scenario

Client

Cache 1 Cache 2 Cache 3

GET logo.jpg GET jquery.js

Another scenario

Client 2

Cache 1 Cache 2 Cache 3

GET logo.jpg GET jquery.js

Other Examples

Scalable stateless web front ends (FE)

- cache efficient iff same client goes to same FE

Scalable shopping cart service

Scalable email service

Scalable cache layer (Memcache)

Scalable network path allocation

Scalable network function virtualization (NFV)

…

What’s in common?

Want to assign keys to servers with minimal
communication, fast lookup

Requirement 1: clients all have same assignment

Proposal 1

For n nodes, a key k goes to k mod n

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”

Proposal 1

For n nodes, a key k goes to k mod n

Problems with this approach?

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”

Proposal 1

For n nodes, a key k goes to k mod n

Problems with this approach?

- uneven distribution of keys

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”

A Bit of Queueing Theory

Assume Poisson arrivals:

- random, uncorrelated, memoryless

- utilization (U): fraction of time server is busy (0 - 1)

- service time (S): average time per request

Queueing Theory

0

20 S

40 S

60 S

80 S

100 S

0 0.2 0.4 0.6 0.8 1.0

R = S/(1-U)

Utilization U

Re
sp

on
se

 T
im

e
R

Variance in response time ~ S/(1-U)^2

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

Cache 1 Cache 2 Cache 3

h(“a”)=1 h(“abc”)=2 h(“b”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

Cache 1 Cache 2 Cache 3

h(“a”)=1 h(“abc”)=2 h(“b”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

Cache 1 Cache 2 Cache 3

h(“a”)=1 h(“abc”)=2 h(“b”)=3

Cache 4

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

Cache 1 Cache 2 Cache 3

h(“a”)=1h(“abc”)=2 h(“b”)=3

Cache 4

h(“a”)=3 h(“b”)=4

h(“b”)=4h(“a”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

- Redistribute a lot of keys! (on average, all but K/n)

Cache 1 Cache 2 Cache 3

h(“abc”)=2

Cache 4

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Requirement 3: add/remove node moves only a few keys

First, hash the node ids

Proposal 3: Consistent Hashing

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2)

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“a”

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“a”

hash(“a”)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“a”

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“b”

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“b”

hash(“b”)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“b”

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

What if we add a node?

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4
Only “b” has to move!

On average, K/n keys move

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4

Load Balance

Assume # keys >> # of servers

- For example, 100K users -> 100 servers

How far off of equal balance is hashing?

- What is typical worst case server?

How far off of equal balance is consistent hashing?

- What is typical worst case server?

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4
Only “b” has to move!

On average, K/n keys move
but all between two nodes

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Requirement 3: add/remove node moves only a few keys

Requirement 4: minimize worst case overload

Requirement 5: parcel out work of redistributing keys

First, hash the node ids to multiple locations

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 232

First, hash the node ids to multiple locations

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 1

First, hash the node ids to multiple locations

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 12 2 2 2 2

First, hash the node ids to multiple locations

As it turns out, hash functions come in families s.t. their
members are independent. So this is easy!

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 12 2 2 2 2

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3 Keys more evenly
distributed and

migration is evenly
spread out.

How Many Virtual Nodes?

How many virtual nodes do we need per server?

- to spread worst case load

- to distribute migrating keys

Assume 100000 clients, 100 servers

- 10?

- 100?

- 1000?

-10000?

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Requirement 3: add/remove node moves only a few keys

Requirement 4: minimize worst case overload

Requirement 5: parcel out work of redistributing keys

Key Popularity

• What if some keys are more popular than others
• Hashing is no longer load balanced!
• One model for popularity is the Zipf distribution
• Popularity of kth most popular item, 1 < c < 2
• 1/k^c

• Ex: 1, 1/2, 1/3, … 1/100 … 1/1000 … 1/10000

Zipf “Heavy Tail” Distribution

Zipf Examples

• Web pages
• Movies
• Library books
• Words in text
• Salaries
• City population
• Twitter followers
• …
Whenever popularity is self-reinforcing
Popularity changes dynamically: what is popular right now?

Proposal 5: Table Indirection

Consistent hashing is (mostly) stateless

- Map is hash function of # servers, # virtual nodes

- Unbalanced with zipf workloads, dynamic load

Instead, put a small table on each client: O(# vnodes)

- table[hash(key)] -> server

- Same table on every client

- Shard master adjusts table entries to balance load

- Periodically broadcast new table

Table Indirection

Cache 1

Cache 2

Cache 3

1

2

3

3

3
2

2

0

232
2

Split hash range into buckets, assign each bucket to a server,
busy server gets fewer buckets, can change over time

Table Indirection

Cache 1

Cache 2

Cache 3

1

2

3

3

3
2

2

0

232
2

Split hash range into buckets, assign each bucket to a server,
low load servers get more buckets, can change over time

hash(“despacito”)

Table Indirection

Cache 1

Cache 2

Cache 3

1

2

3

3

3
2

2

0

232
2

Split hash range into buckets, assign each bucket to a server,
low load servers get more buckets, can change over time

hash(“paxos”)

Proposal 6: Power of Two Choices

Read-only or stateless workloads:

- allow any task to be handled on one of two servers

- pair picked at random: hash(k), hash’(k)

- (using consistent hashing with virtual nodes)

- periodically collect data about server load

- send new work to less loaded server of the two

- or with likelihood ~ (1 - load)

Power of Two Choices

Why does this work?

- every key assigned to a different random pair

- suppose k1 happens to map to same server as a
popular key k2

- k1’s alternate very likely to be different than k2’s
alternate

Generalize: spread very busy keys over more choices

Power of Two Choices

Cache 1

Cache 2

Cache 3

1

hash(“despacito”)
2

Power of Two Choices

Cache 1

Cache 2

Cache 3

1

hash(“despacito”)
2

Power of Two Choices

Cache 1

Cache 2

Cache 3

2

hash(“paxos”)
3

Power of Two Choices

Cache 1

Cache 2

Cache 3

2

hash(“paxos”)
3

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Requirement 3: add/remove node moves only a few keys

Requirement 4: minimize worst case overload

Requirement 5: parcel out work of redistributing keys

Requirement 6: balance work even with zipf demand

Next

“Distributed systems in practice”

- Memcache: scalable caching layer between
stateless front ends and storage

- GFS: scalable distributed storage for stream files

- BigTable: scalable key-value store

- Spanner: cross-data center transactional key-value
store

Thursday

Yegge on Service-Oriented Architectures

- Steve Yegge, prolific programmer and blogger

- Moved from Amazon to Google

- Reading is an accidentally-leaked memo about
differences between Amazon’s and Google’s system
architectures (at that time)

- SOA: separate applications (e.g. Google Search) into
many primitive services, run internally as products

