
Sharding



Scaling Paxos: Shards

We can use Paxos to decide on the order of operations, 
e.g., to a key-value store 

- leader sends each op to all servers 

- practical limit on how ops/second 

What if we want to scale to more clients? 

Sharding among multiple Paxos groups 

- partition key-space among groups 

- for single key operations, still linearizable
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Replicated, Sharded Database

Shard master decides 

- which Paxos group has which keys 

Shards operate independently 

How do clients know who has what keys?  

- Ask shard master?  Becomes the bottleneck! 

- Avoid shard master communication if possible 

Can clients predict which group has which keys?



Recurring Problem

Client needs to access some resource 

Sharded for scalability 

How does client find specific server to use? 

Central redirection won’t scale!
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Another scenario

Client

index.html
Links to: logo.jpg, jquery.js, …
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Another scenario

Client 2
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Other Examples

Scalable stateless web front ends (FE) 

- cache efficient iff same client goes to same FE 

Scalable shopping cart service 

Scalable email service 

Scalable cache layer (Memcache) 

Scalable network path allocation 

Scalable network function virtualization (NFV) 

…



What’s in common?

Want to assign keys to servers with minimal 
communication, fast lookup 

Requirement 1: clients all have same assignment



Proposal 1

For n nodes, a key k goes to k mod n 

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”



Proposal 1

For n nodes, a key k goes to k mod n 

Problems with this approach? 

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”



Proposal 1

For n nodes, a key k goes to k mod n 

Problems with this approach? 

- uneven distribution of keys 

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”



A Bit of Queueing Theory

Assume Poisson arrivals: 

- random, uncorrelated, memoryless 

- utilization (U): fraction of time server is busy (0 - 1) 

- service time (S): average time per request
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Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed
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Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n 

Hash distributes keys uniformly 

But, new problem: what if we add a node? 

Cache 1 Cache 2 Cache 3

h(“a”)=1h(“abc”)=2 h(“b”)=3

Cache 4

h(“a”)=3 h(“b”)=4



h(“b”)=4h(“a”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n 

Hash distributes keys uniformly 

But, new problem: what if we add a node? 

- Redistribute a lot of keys! (on average, all but K/n)

Cache 1 Cache 2 Cache 3

h(“abc”)=2

Cache 4



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed 

Requirement 3: add/remove node moves only a few keys
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First, hash the node ids 

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing
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Load Balance

Assume # keys >> # of servers 

- For example, 100K users -> 100 servers 

How far off of equal balance is hashing? 

- What is typical worst case server? 

How far off of equal balance is consistent hashing? 

- What is typical worst case server?



Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4
Only “b” has to move! 

On average, K/n keys move 
but all between two nodes



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed 

Requirement 3: add/remove node moves only a few keys 

Requirement 4: minimize worst case overload 

Requirement 5: parcel out work of redistributing keys
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First, hash the node ids to multiple locations 

As it turns out, hash functions come in families s.t. their 
members are independent. So this is easy! 

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 12 2 2 2 2
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Prop 4: Virtual NodesCache 1

Cache 2

Cache 3 Keys more evenly  
distributed and 

migration is evenly 
spread out. 



How Many Virtual Nodes?

How many virtual nodes do we need per server? 

- to spread worst case load 

- to distribute migrating keys 

Assume 100000 clients, 100 servers  

-      10? 

-    100? 

-  1000? 

-10000?



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed 

Requirement 3: add/remove node moves only a few keys 

Requirement 4: minimize worst case overload 

Requirement 5: parcel out work of redistributing keys



Key Popularity

• What if some keys are more popular than others 
• Hashing is no longer load balanced! 
• One model for popularity is the Zipf distribution 
• Popularity of kth most popular item, 1 < c < 2 
• 1/k^c 

• Ex: 1, 1/2, 1/3, … 1/100 … 1/1000 … 1/10000



Zipf “Heavy Tail” Distribution



Zipf Examples

• Web pages 
• Movies 
• Library books 
• Words in text 
• Salaries 
• City population 
• Twitter followers 
• … 
Whenever popularity is self-reinforcing 
Popularity changes dynamically: what is popular right now?



Proposal 5: Table Indirection

Consistent hashing is (mostly) stateless 

- Map is hash function of # servers, # virtual nodes 

- Unbalanced with zipf workloads, dynamic load 

Instead, put a small table on each client: O(# vnodes) 

- table[hash(key)] -> server 

- Same table on every client 

- Shard master adjusts table entries to balance load 

- Periodically broadcast new table
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low load servers get more buckets, can change over time

hash(“paxos”)



Proposal 6: Power of Two Choices

Read-only or stateless workloads: 

- allow any task to be handled on one of two servers 

- pair picked at random: hash(k), hash’(k) 

- (using consistent hashing with virtual nodes) 

- periodically collect data about server load 

- send new work to less loaded server of the two 

- or with likelihood ~ (1 - load) 



Power of Two Choices

Why does this work? 

- every key assigned to a different random pair 

- suppose k1 happens to map to same server as a 
popular key k2 

- k1’s alternate very likely to be different than k2’s 
alternate 

Generalize: spread very busy keys over more choices
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Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed 

Requirement 3: add/remove node moves only a few keys 

Requirement 4: minimize worst case overload 

Requirement 5: parcel out work of redistributing keys 

Requirement 6: balance work even with zipf demand



Next

“Distributed systems in practice” 

- Memcache: scalable caching layer between 
stateless front ends and storage 

- GFS: scalable distributed storage for stream files 

- BigTable: scalable key-value store 

- Spanner: cross-data center transactional key-value 
store



Thursday

Yegge on Service-Oriented Architectures 

- Steve Yegge, prolific programmer and blogger 

- Moved from Amazon to Google 

- Reading is an accidentally-leaked memo about 
differences between Amazon’s and Google’s system 
architectures (at that time) 

- SOA: separate applications (e.g. Google Search) into 
many primitive services, run internally as products


