Remote Procedure Call

Tom Anderson



Q&A During Lecture

Verbal questions during lecture ok
— Unmute to interrupt
— Re-mute when done

Chat questions also ok, if related to lecture topics
— Send non-lecture Q&A to Ed
— Please let the TA’s or me answer lecture questions

| will try to pause periodically for questions
We will try to answer everyone’s questions

— If not live, then after class or on Ed
— |If we miss your question, please repost to Ed



Class Mechanics

* Everyone will need (and should have):

— Canvas access
e Zoom lecture/section links (OH link under syllabus)

e Recorded lectures/sections, with chats
* Blog assignments (soon, Canvas Discussions)

— Gitlab repo (uw netid)
— Ed access
— Gradescope (soon)



WIiFi Carrier Sense

* Chat flood: example of synchronized behavior in
a distributed system
* Another example: carrier sense

— Multiple WiFi senders at the same time can interfere
with each other -> no one gets through

— Carrier sense: only send if no one else is sending

* What happens when previous sender finishes?
— Everyone who is waiting tries to send, at same time!
— Everyone collides, no one succeeds



The Two Generals Problem

 Two armies are encamped on two hills surrounding a
city in a valley

 The generals succeed if they agree on the same time to
attack, fail otherwise

* Their only way to communicate is by sending a
messenger through the valley, but that messenger
could be captured (and the message lost)



Two Generals Protocol

Custer Gibbon

W

Ok to attack?



Two Generals Protocol

Custer Gibbon

At
tack at dawn 5
ok 1AL
With x

Ok to attack?



Two Generals Protocol

Custer Gibbon

W

o That
d With
S0 am

Ok to attack?



The Two Generals Problem

* No solution is possible!
 |f a solution were possible:
— it must have involved sending some messages

— but the last message could have been lost, so
we must not have really needed it

— SO we can remove that message entirely

* We can apply this logic to any protocol, and
remove all the messages — contradiction



Why Are Distributed Systems Hard?

* Asynchrony

— Different nodes run at different speeds

— Messages can be unpredictably, arbitrarily delayed
* Failures (partial and ambiguous)

— Parts of the system can crash

— Can’t tell crash from slowness
e Concurrency and consistency

— Replicated state, cached on multiple nodes
— How to keep many copies of data consistent?



Why Are Distributed Systems Hard?

* Performance
— Have to efficiently coordinate many machines
— Performance is variable and unpredictable
— Tail latency: only as fast as slowest machine
* Testing and verification
— Almost impossible to test all failure cases
— Proofs (emerging field) are really hard
* Security
— Need to assume adversarial nodes



Three-tier Web Architecture

e Scalable number of front-end web servers

— Stateless (“RESTful”): if crash can reconnect the
user to another server

* Scalable number of cache servers
— Lower latency (better for front end)
— Reduce load (better for database)
— Q: how do we keep the cache layer consistent?
* Scalable number of back-end database servers
— Run carefully designed distributed systems code



Client

Three-Tier Web Architecture

Front End Server

/

Front End Server
Front End Server

Front End Server

Cache Server
Cache Server

Cache Server

Storage Server
Storage Server
Storage Server
Storage Server
Storage Server



Client

Three-Tier Web Architecture

Front End Server

/

Front End Server

Cache Server

Cache Server

Front End Server

Front End Server

- Cache Server

Storage Server
Storage Server
Storage Server
Storage Server
Storage Server



Three-Tier Web Architecture

Cache Server

Front En rver
d Serve Cache Server
Cache miss

Front End Server __ Cache Server
Front End Server

Client Front End Server

Storage Server
Storage Server
Storage Server
Storage Server
Storage Server



And Beyond

* Worldwide distribution of users
— Cross continent Internet delay ~ half a second

— Amazon: reduction in sales if latency > 100ms

* Many data centers
— Near every user
— Smaller data centers have web and cache layer
— Larger data centers include storage layer as well
— How do we coordinate updates across data centers?



Remote Procedure Call (RPC)

A request from a client to execute a function on
a server.
— To the client, looks like a procedure call

— To the server, looks like an implementation of a
procedure call



Thought Experiment

Client sends a request to Amazon
Network is flaky

— Don’t hear back for a second
Can you tell?

— Request was lost
— Server was down
— Request got through, reply was lost

Should the client resend?



Thought Experiment

* The client resends
* But the original packet got through

* What should the server do?
— Crash?
— Do the operation twice?
— Something else?



Remote Procedure Call (RPC)

Client request to execute a function on the server

* On client: result = BuyBook(OSPP)
— Parameters marshalled into a message (arbitrary types)
— Message sent to server (may be multiple pkts)
— Wait for reply

* On server: implement BuyBook
— message is parsed
— Perform operation
— Put result into a message (may be multiple pkts)
— Result returned to client



RPC implementation

BuyBook (OSPP) BuyBook(arg){}

* RPC library *

Serialize args

RPC library

Serialize rep Read data
Write data 2rialize args
A W

Transport

Read data
Deserialize reply

Open connection

Nrite data




RPC vs. Procedure Call

 What is equivalent of:
— The name of the procedure?
— The calling convention?
— The return value?

— The return address?



RPC vs. Procedure Call

Binding
— Client needs a connection to server
— Server must implement the required function
— What if the server is running a different version of
the code?
Performance
— procedure call: ~ 10 instructions = ~3 ns
— RPCin data center: 100 usec => 10K x slower
— RPCin the wide area: 100+ msec => 10M x slower



RPC vs. Procedure Call

Failures
— What happens if messages get dropped?
— What if client crashes?
— What if server crashes?

— What if server crashes after performing op but
before replying?

— What if server appears to crash but is slow?

— What if network partitions?



Message Ordering

Client sends a sequence of messages to server
—a,b,c d..

Some can get dropped

— Let’s say c

— Receiver acks correctly received messages

— Client retransmits anything missing (after timeout)
Server gets sequence

—a,b,d e c..

Fix?



Message Ordering

Client sends a sequence of messages to server
—a,b,c d..

Some can get dropped

— Receiver acks correctly received messages

— Client retransmits anything missing (after timeout)
Server gets sequence (why?)

—a,b,c,d, ec, ..

Fix?



Message Ordering

* Message ordering
— Label messages with sequence number
— Detect missing messages
— Detect unneeded retransmissions

* Labs assume each client sends only one RPC at
a time

— Still need to worry about lost and duplicate RPCs



RPC vs. Procedure Call

Failures
— What happens if messages get dropped?
— What if client crashes?
— What if server crashes?

— What if server crashes after performing op but
before replying?

— What if server appears to crash but is slow?

— What if network partitions?



RPC Semantics

* Semantics = meaning

* reply == ok => ???
* reply I= ok => 7?77



Semantics

e At least once (NFS, DNS, lab 1b)

— true: executed at least once

— false: maybe executed, maybe multiple times
e At most once (lab 1c)

— true: executed once

— false: maybe executed, but never more than once
* Exactly once

— true: executed once
— false: never returns false



At Least Once

RPC library waits for response for a while

f none arrives, re-send the request

Do this a few times

Still no response -- return an error to the
application



Non-replicated key/value server

Client sends Put k v
Server gets request, but network drops reply
Client sends Put k v again

— should server respond "yes"?

— or"no"?

What if op is “append”?



Does TCP Fix This?

 TCP: reliable bi-directional byte stream between
two endpoints

— Retransmission of lost packets
— Duplicate detection
— Useful: most RPCs sent over TCP!

e But what if TCP times out and client reconnects?

— Browser connects to Amazon
— RPC to purchase book

— Wifi times out during RPC

— Browser reconnects



When does at-least-once work?

* |f no side effects

— read-only operations (or idempotent ops)
 Example: MapReduce

— doMaplJob(i) — ok to do more than once
 Example: NFS

— readFileBlock

— writeFileBlock

— What about delete file? Append to a file?



At Most Once

Client includes unique ID (UID) with each request
— use same UID for re-send

Server RPC code detects duplicate requests
— return previous reply instead of re-running handler
if seen[uid] {
r = old[uid]
} else {
r = handler()
old[uid] =r
seen[uid] = true



Some At-Most-Once Issues

How do we ensure UID is unique?
— Big random number?
— Combine unique client ID (IP address?) with seq #?

— What if client crashes and restarts? Can it reuse the
same UID?

— Inlabs, nodes never restart
— Equivalent to: every node gets new ID on start



When Can Server to Discard Old RPCs?

Option 1:
Never?
Option 2:
unique client IDs
per-client RPC sequence numbers
client includes "seen all replies <= X" with every RPC
Option 3: only allow client one outstanding RPC at a time
arrival of seg+1 allows server to discard all <= seq
Labs use Option 3



What if Server Crashes?

If at-most-once list of recent RPC results is
stored in memory, server will forget and accept
duplicate requests when it reboots

— Does server need to write the recent RPC results
to disk?

— If replicated, does replica also need to store
recent RPC results?

In Labs, server gets new address on restart

— Client messages aren’t delivered to restarted
server



backup



MapReduce Computational Model

For each key k with value v, compute a new set of
key-value pairs:

map (k,v) = list(k’,v’)

For each key k' and list of values v/, compute a new
(hopefully smaller) list of values:

reduce (k’list(v’)) = list(v"’)

User writes map and reduce functions.

Framework takes care of parallelism, distribution,
and fault tolerance.



MapReduce Example: grep
find lines that match text pattern

1. Master splits file into M almost equal chunks at
line boundaries

2. Master hands each partition to mapper

3. map phase: for each partition, call map on each
line of text

— search line for word

— output line number, line of text if word shows up, nil
if not

4. Partition results among R reducers

— map writes each output record into a file, hashed on
key



Example: grep

5. Reduce phase: each reduce job collects 1/R
output from each Map job

— all map jobs have completed!
— Reduce function is identity: v1 in, v1 out

6. merge phase: master merges R outputs



MapReduce (or ML or ...) Architecture

Scheduler accepts MapReduce jobs
— finds a MapReduce master and set of avail workers
For each job, MapReduce master <array>

— farms tasks to workers; restarts failed jobs; syncs task
completion

Worker <array>

— executes Map and Reduce tasks

Storage <array>

— stores initial data set, intermediate files, end results



