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Goals

Rapid application development (“velocity”) 
- Speed of adding new features is paramount 

Scale 
– Billions of users 
– Every user on FB all the time 

Performance 
– Low latency for every user everywhere 

Fault tolerance 
– Scale implies failures 

Consistency model:  
– “Best effort eventual consistency”



Facebook’s Scaling Problem

• Rapidly increasing user base 
– Small initial user base 
– 2x every 9 months 
– 2013: 1B users globally 

• Users read/update many times per day 
– Increasingly intensive app logic per user 
– 2x I/O every 4-6 months 

• Infrastructure has to keep pace



Scaling Strategy

Adapt off the shelf components where possible 
Fix as you go 
– no overarching plan 

Rule of thumb: Every order of magnitude 
requires a rethink
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Facebook Three Layer Architecture

• Application front end 
– Stateless, rapidly changing program logic 
– If app server fails, redirect client to new app server 

• Memcache 
– Lookaside key-value cache 
– Keys defined by app logic (can be computed results) 

• Fault tolerant storage backend 
– Stateful 
– Careful engineering to provide safety and performance 
– Both SQL and NoSQL



Facebook Workload

Each user’s page is unique 
– draws on events posted by other users 

Users not in cliques 
– For the most part 

User popularity is zipf 
– Some user posts affect very large #’s of other pages 
– Most affect a much smaller number



Workload

• Many small lookups 
• Many dependencies 
• App logic: many diffuse, chained reads 
–  latency of each read is crucial 

• Much smaller update rate 
– still large in absolute terms



Scaling

• A few servers 
• Many servers 
• An entire data center 
• Many data centers 

Each step 10-100x previous one



Facebook

• Scale by hashing to partitioned servers 
• Scale by caching 
• Scale by replicating popular keys 
• Scale by replicating clusters 
• Scale by replicating data centers



Scale By Consistent Hashing

Hash users to front end web servers 
Hash keys to memcache servers 
Hash files to SQL servers 

Result of consistent hashing is all to all 
communication pattern 
– Each web server pulls data from all memcache 

servers and all storage servers



Scale By Caching: Memcache

Sharded in-memory key-value cache 
– Key, values assigned by application code 
– Values can be data, result of computation 
– Independent of backend storage architecture (SQL, 

noSQL) or format 
– Design for high volume, low latency 

Lookaside architecture
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Lookaside Operation (Read)

• Webserver needs key value 
• Webserver requests from memcache 
• Memcache: If in cache, return it 
• If not in cache:  
– Return error 
– Webserver gets data from storage server 
– Possibly an SQL query or complex computation 
– Webserver stores result back into memcache



Question

What if swarm of users read same key at the 
same time?
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Lookaside Operation (Write)

• Webserver changes a value that would 
invalidate a memcache entry 
– Could be an update to a key 
– Could be an update to a table 
– Could be an update to a value used to derive some 

key value 

• Client puts new data on storage server 
• Client invalidates entry in memcache
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Memcache Consistency

Is memcache linearizable?



Example

 Reader 

Read cache 
If missing, 
  Fetch from database 
  Store back to cache

Writer 

Change database 
Delete cache entry

Interleave any # of readers/writers 



Example

• Read cache 
• Read database 

• Store back to cache

• change database 
• Delete entry



Memcache Consistency

Is the lookaside protocol eventually consistent?



Lookaside With Leases

Goals: 
– Reduce (not eliminate) per-key inconsistencies 
– Reduce cache miss swarms 

On a read miss: 
– leave a marker in the cache (fetch in progress) 
– return timestamp 
– check timestamp when filling the cache 
– if changed in meantime: don't overwrite 

If another thread read misses: 
– find marker and wait for update (retry later)



Question

What if front end crashes while holding read lease?   
Would any other front end be able to read the data?



Question

Is FB’s version of lookaside with leases 
linearizable? 



Example: Cache data with 1 replica

Reader1 
(data cached) 
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(before Delete cache)



Question

Is FB’s version of lookaside with leases 
linearizable? 

Note FB allows popular data to be found in 
multiple cache servers
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Example: Cache data with 2 replicas

Reader1 
(data cached) 

Read replica1 
(old value) 

Read replica1 
(old value)

Writer 

Change database 

CRASH!  
(before Delete cache)

Reader2 
(not cached) 

Read replica2 
Miss 
Fetch from db 
Write back to replica 2 
(new value)



Latency Optimizations

Concurrent lookups 
– Issue many lookups concurrently 
– Prioritize those that have chained dependencies 

Batching 
– Batch multiple requests (e.g., for different end 

users) to the same memcache server 

Incast control:  
– Limit concurrency to avoid collisions among RPC 

responses



More Optimizations

Return stale data to web server if lease is held 
– No guarantee that concurrent requests returning 

stale data will be consistent with each other 
Partitioned memory pools 
– Infrequently accessed, expensive to recompute 
– Frequently accessed, cheap to recompute 
– If mixed, frequent accesses will evict all others 

Replicate keys if access rate is too high



Gutter Cache

When a memcache server fails, flood of requests 
to fetch data from storage layer 
– Slower for users needing any key on failed server 
– Slower for users due to storage server contention 

Solution: backup (gutter) cache 
– Time-to-live invalidation (ok if clients disagree as to 

whether memcache server is still alive) 
– TTL is eventually consistent



Scaling Within a Cluster

What happens as we increase the number of 
memcache servers to handle more load? 
– Recall: All to all communication pattern 
– Less data between any pair of nodes: less batching 
– Need even more replication of popular keys 
– More failures: need bigger gutter cache 
– …



Multi-Cluster Scaling

Multiple independent clusters within data center 
– Each with front-ends, memcache servers 
– Data replicated in the caches in each partition 
– Shared storage backend 

Data is replicated in each cluster (inefficient?) 
– need to invalidate every cluster on every update 

Instead: 
– invalidate local cluster on update (read my writes) 
– background invalidate driven off of database update log 
– temporary inconsistency!
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mcsqueal

Web servers talk to local memcache.  On update: 
– Acquire local lease  
– Tell storage layer which keys to invalidate 
– Invalidate local memcache 

Storage layer sends invalidations to other clusters 
– Scan database log for updates/invalidations 
– Batch invalidations to each cluster (mcrouter) 
– Forward/batch invalidations to remote memcache 

servers



Per-Cluster vs. Multi-Cluster

Per-cluster memcache servers 
– Frequently accessed data 
– Inexpensive to compute data 
– Lower latency, less efficient use of memory 

Shared multi-cluster memcache servers 
– infrequently accessed 
– hard to compute data 
– higher latency, more memory efficient



Cold Start Consistency

During new cluster startup: 
– Many cache misses! 
– Lots of extra load on SQL servers 

Instead of going to SQL server on cache miss: 
– Webserver gets data from warm memcache cluster 
– Puts data into local cluster 
– Subsequent requests hit in local cluster



Multi-Region Scaling

Storage layer consistency 
– Storage at one data center designated as primary 
– All updates applied at primary 
– Updates propagated in background to other data 

centers 

What could go wrong?



Stale Reads
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Multi-Region Consistency

To perform an update to key: 
– put marker into local region 
– Send write to primary region 
– Delete local copy 

On a cache miss: 
– Check if local marker 
– If so, fetch data from primary region 
– Fill local copy



FB: Data Centers without Data

Tradeoff in increasing number of data centers 
– Lower latency when data near clients 
– More consistency overhead 
– More opportunity for inconsistency 

Mini-data centers 
– Front end web servers 
– Memcache servers 
– No backend storage: remote access for cache misses



Linearizability?

Is linearizability possible with a memcache layer? 
- Needs help from storage layer 
- Every cached copy removed before write 

What about snapshot reads? 
- Needs help from storage layer 
- Every copy has version timestamp range 
- Multikey query valid if ranges overlap


