
Leases and Cache 
Coherence



Leases
Lease - a time-limited right to do something 

- can be renewed 

- unlike Paxos, depends on loosely synchronized clocks 

Lease fault tolerance 

- if lease holder or network fails, wait for lease to expire 

- plus epsilon to account for clock drift 

- hand lease to someone new 



Paxos as Lease Server

Paxos group as fault tolerant view server 

- grant lease to primary 

- primary serves requests 

- revoke lease if not renewed 

- grant lease to new primary 

Design pattern used in GFS, BigTable, …



Primary election in Chubby, Zookeeper

x = Open(“/BigTable/primary”)
if (TryAcquire(x) == success) {
  // I'm the primary, tell everyone
  SetContents(x, my-address)
} else {
  // I'm not the primary, find out who is
  primary = GetContents(x)
  // also set up notifications 
  // in case the primary changes
}



Example

Paxos

Chubby

App

App

Client



Example

Paxos

Chubby

App

App TryAcquire

Client



Example

Paxos

Chubby

App

App
OK

Client



Example

Paxos

Chubby

App

Primary

Client



Example

Paxos

Chubby

App

Primary

Client
TryAcquire



Example

Paxos

Chubby

App

Primary

Client
Nope



Example

Paxos

Chubby

Backup

Primary

Client



Example

Paxos

Chubby

Backup

Primary

Client GetContents



Example

Paxos

Chubby

Backup

Primary

Client Primary



Example

Paxos

Chubby

Backup

Primary

Client



Example

Paxos

Chubby

Backup

Primary

Client
Requests



What if Primary Fails?

Paxos

Chubby

Backup

Primary

Client
X



What if Primary Fails?

Paxos

Chubby

Backup

Primary

Client
X



What if Primary Fails?

Paxos

Chubby

Backup

Primary

Client
X

TryAcquire



What if Primary Fails?

Paxos

Chubby

Backup

Primary

Client
X

OK



What if Primary Fails?

Paxos

Chubby

Primary

Primary

Client
X



Primary Backup With Leases

What if the old primary didn’t crash? 

Client sends request to old primary 

What keeps old primary from performing op?



Primary Backup With Leases

What if the old primary didn’t crash? 

Client sends request to old primary 

What keeps old primary from performing op? 

Old primary demotes itself if it doesn’t renew lease



Primary Backup with Leases

No possibility of split brain 

Reads can occur at the primary! 

- no need to talk to backup 

Writes can be logged to storage layer 

- on failure, new primary reads latest changes from 
storage layer 

- backup is optimization to speed recovery



Fault Tolerant Caching with Leases

Linearizability with caches is another use of leases 

Cache obtains lease (ex: read-only) 

No one can modify data until lease expires or is revoked 

Once lease expires, ok for server to change



Caching With Leases

Paxos

Chubby

Cache 2

Cache 1

Client

Client

Client

Client



Caching With Leases

Server

Cache 2

Cache 1

Client

lease

Client

Client

Client

Client



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client
Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, for t

x=3, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, for t

 x= 3, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, for t

 x= 3, for t

Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, for t

 x= 3, for t
Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t
x=3, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t



Caching With Leases

Why give out cache leases with same values of t? 

Why give out cache leases with different values of t?



Caching With Leases

Why give out cache leases with same values of t? 

- less state at server 

- can reclaim leases at same time 

Why give out cache leases with different values of t? 

- caches all ask for new lease at same time



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t
Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t
x=3



Caching With Leases

Can clients cache values too?



Caching With Leases

Can clients cache values too? 

Yes!  Leases can be delegated. 

Caches keep track as to which clients have which data.



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t

Put x=4



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

Put x=4

 x= 3, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t

Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t
x=3



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

No one has copy of x 
Ok to change x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

 x= 3, for t

Put x=4

OR



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, for t

 x= 3, for t

Put x=4



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 2 has x, for t

 x= 3, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 2 has x, for t

 x= 3, for t

Revoke x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 2 has x, for t



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 2 has x, for t
OK!



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

No one has copy of x 
Ok to change x



Caching With Leases

Why can’t we leave the old value on cache 1 while we 
shoot down other copies? 

Why can’t we just update the old value on cache 1 
and then shoot down the other copies? 



Caching With Leases

Why can’t we leave the old value on cache 1 while we 
shoot down other copies? 

Why can’t we just update the old value on cache 1 
and then shoot down the other copies? 

Linearizability: as if there is only one copy 

- implement by having only one copy for updates 

- many copies ok when no one is updating



Caching with Invalidation

Cache obtains lease (read-only) 

No one can modify data until lease expires or is revoked 

Server gets update 

Forwards invalidation (revoke) to every node with copy 

Wait for response from all (or timeout) 

OK to proceed with change



Terminology

Cache coherence: keeping caches up to date 

- can be linearizable, or weaker semantics 

Write through: caches hold read-only data 

- write sent to store, store revokes copies 

Write back: caches can hold read-only or modified data 

- write to cache, cache asks store to revoke 

- subsequent writes faster



MSI

Three cache states: 

- Modified: this is the only copy, it’s dirty 

- Shared: this is one of many copies, it’s clean 

- Invalid 

Allowed states between pairs of caches: 
M S I

M ü

S ü ü

I ü ü ü



Write Back Fault Tolerance?

Write back: caches can hold modified data 

What happens when cache fails?  Lose data? 

Option 1: checkpoint/restart if any cache fails 

- appropriate for background computations 

- CPU cache coherence is write-back 

Option 2: log local changes to replicas 

- identical to lease to a primary (primary logs changes), 
except fine-grained leases 



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client
Get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, shared

x=3, t, shared



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, shared

 x= 3, t, shared



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, shared

 x= 3, t, shared
Put x, 4



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, shared

 x= 3, t, shared
Put x, 4



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, shared

 x= 3, t, shared

Need x, dirty



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 3, t, shared

x, dirty



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 4, t, dirty



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 4, t, dirty
ok!



Caching With Leases

Why does cache 1 wait until other copies are revoked 
and write is applied before returning ok to client?



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 4, t, dirty

Put x, 5



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, dirty



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, dirty
ok!



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, dirty

get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, dirty
get x



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, dirty

Revoke x 
shared



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, shared



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1 has x, t, dirty

 x= 5, t, shared

ok! x=5



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, t, shared

 x= 5, t, shared
ok! x= 5



Caching With Leases

Server

Cache 2

Cache 1

ClientClient

Client

Client

Client

Cache 1,2 has x, t, shared

 x= 5, t, shared

 x= 5, t, shared



Questions

While a write to x is waiting on invalidations, can other 
clients read old values of x from their caches?



Questions

While a write to x is waiting on invalidations, can the 
server perform a read to y != x?



Questions

While a write to x is waiting on invalidations, can the 
server perform a write (from another cache) to y != x?



Questions

While a write to x is waiting on invalidations, can the 
server perform a write (from another cache) to y = x?



Write Back Cache Coherence

On a write: 

- Send invalidations to all caches 

- Each cache invalidates, responds  
  (possibly with updated data) 

- Wait for all invalidations 

- Return 

Reads can proceed when there is a local copy 

Order requests carefully at server, avoid deadlock



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified

Read miss



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified
Write miss



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified

Local write



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified

Remote write



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified
Remote write



MSI

Invalid

Shared

Modified



MSI

Invalid

Shared

Modified

Write back / 
Remote read



MESI
Motivation: 

- Common pattern: read, then write 

- MSI inefficient when doing a read and then a write 

- If no one else has a copy, can “claim” it with the read 

Four cache states: 

- Modified: this is the only copy, it’s dirty 

- Exclusive: this is the only copy, it’s clean 

- Shared: this is one of many copies, it’s clean 

- Invalid



MESI allowed states

M E S I
M ü

E ü

S ü ü

I ü ü ü ü



False Sharing

Expensive to keep track of MESI for every memory location 

Instead, coarse-grained record-keeping 

- CPUs: cache line granularity 

- File systems: file/file block granularity 

What if two clients try to modify different memory locations 
in same block, concurrently? 

- Cache line can only be “dirty" in one at a time 

- Correct behavior, but slow



Atomic Read-Modify-Write

RMW needed to implement spinlocks and other sync 

Request cache line exclusive/modified 

Delay concurrent remote read/write misses until entire 
operation completes



Multi-key Transactions

Often want to read/modify multiple keys atomically 

Acquire cache lines in MESI state 

If remote miss during transaction 

- Abort, erase modifications, and try again 

- Or delay until done 

If reach end of transaction without remote miss 

- Success! 



Weak leases

Cache valid until lease expires 

Allow writes, other reads simultaneously 

Semantics?



Weak leases

Examples: NFS, DNS, web browsers 

Advantages 

- Stateless at server (don’t care who is caching) 

- Reads, writes always processed immediately 

Disadvantages 

- Consistency model (!!!) 

- Overhead of revalidations 

- Synchronized revalidations


