
CSE 452
Distributed Systems

Tom Anderson

Distributed Systems

• How to make a set of computers work together
– Reliably
– Efficiently
– At (huge) scale
– With high availability

• Despite messages being lost and/or taking a
variable amount of time

• Despite nodes crashing or behaving badly, or
being offline

A Thought Experiment

Suppose there is a group of people, standing in a
circle, two have green dots on their foreheads.

Without using a mirror or directly asking, can
anyone tell if they themselves have a green dot?

A Thought Experiment

Suppose there is a group of people, standing in a
circle, two have green dots on their foreheads.

Without using a mirror or directly asking, can
anyone tell if they themselves have a green dot?

What if I say: someone has a green dot
– Something everyone already knows!

There’s a difference between what you know
and what you know others know.

And what others know you know.

What is a Distributed System?

A group of computers that work together to
accomplish some task
– Independent failure modes
– Connected by a network with its own failure modes

Distributed Systems, 1990

Leslie Lamport:

“A distributed system is one where you can’t get
your work done because some machine you’ve
never heard of is broken.”

We’ve Made Some Progress

Today a distributed system is one where you can
get your work done (almost always):
– wherever you are
– whenever you want
– even if parts of the system aren’t working
– no matter how many other people are using it
– as if it was a single dedicated system just for you
– that (almost) never fails

Concurrency is Fundamental

• CSE 451: Operating Systems
– How to make a single computer work reliably
– With many users and processes

• CSE 461: Computer Networks
– How to connect computers together
– Networks are a type of distributed system

• CSE 444: Database System Internals
– How to manage (big) data reliably and efficiently
– Primary focus is single node databases

Course Project

Build a sharded, linearizable, available key-value
store, with dynamic load balancing and atomic
multi-key transactions

Course Project

Build a sharded, linearizable, available key-value
store, with dynamic load balancing and atomic
multi-key transactions
– Key-value store: distributed hash table
– Linearizable: equivalent to a single node
– Available: continues to work despite failures
– Sharded: keys on multiple nodes
– Dynamic load balancing: keys move between nodes
– Multi-key atomicity: linearizable for multi-key ops

Project Mechanics

• Lab 0: introduction to framework and tools
– Do Lab 0 before section this week (ungraded)

• Lab 1: exactly once RPC, key-value store
– Next Thursday, individually
– Lab 2-4: pairs or individually

• Lab 2: primary backup (tolerate failures)
• Lab 3: paxos (tolerate even more failures)
• Lab 4: sharding, load balancing, transactions

Project Tools

• Automated testing
– Run tests: all the tests we can think of
– Model checking: try all possible message

deliveries and node failures

• Visual debugger
– Control and replay over message delivery, failures

• Java, with restrictions
– Model checker needs to collapse equivalent states

Project Rules

• OK
– Consult with us or other students in the class

• Not OK
– Look at other people’s code (in class or out)
– Cut and paste code

Some Career Advice

Knowledge >> grades

Capability vs. Time

Time

Ca
pa

bi
lit

y
(lo

g
sc

al
e)

Microsoft Excel

Lotus 123

Capability vs. Time

Time

Ca
pa

bi
lit

y
(lo

g
sc

al
e)

Microsoft Excel

Lotus 123

Readings

• There is no adequate distributed systems
textbook

• Instead, we’ve assigned:
– Some tutorials/book chapters
– A dozen+ research papers

• Both are important
• Read before class
– See course web calendar page

Blogs

• How do you read a research paper?
– An important skill, because research ideas often

make it into practice

• Practice by blogging about papers
– Write a short thought about the paper to the Canvas

discussion thread; learn from other people’s blog
entries

• Blog seven papers (one per week)

Some More Career Advice

The Technical Ladder

Knowing what should be built
Knowing what can be built
Knowing how to build it

Problem Sets

• Three problem sets
– Done individually

• No midterm
• No final

• Course is not curved

Logistics

• Zoom for lectures, sections, office hours
– Links in canvas/zoom

• Gitlab for lab assignments
– Largely self-graded

• Ed for project Q&A
• Gradescope for problem sets and lab turn-ins
• Canvas for blog posts

Why Distributed Systems?

• Conquer geographic separation
– 3.5B smartphone users; locality is crucial

• Availability despite unreliable components
– System shouldn’t fail when one computer does

• Scale up capacity
– Cycles, memory, disks, network bandwidth

• Customize computers for specific tasks
– Ex: disaggregated storage, email, backup

End of Dennard Scaling

• Moore’s Law: transistor density improves at an
exponential rate (2x/2 years)

• Dennard scaling: as transistors get smaller, power
density stays constant

• Recent: power increases with transistor density
– Scale out for performance

• All large scale computing is distributed

Example

• 2004: Facebook started on a single server
– Web server front end to assemble each user’s page
– Database to store posts, friend lists, etc.

• 2008: 100M users
• 2010: 500M
• 2012: 1B
• 2020: 2.5B

How do we scale up beyond a single server?

Facebook Scaling

• One server running both webserver and DB
• Two servers: webserver, DB
– System is offline 2x as often!

• Server pair for each social community
– E.g., school or college
– What if friends cross servers?
– What if server fails?

Two-tier Architecture

• Scalable number of front-end web servers
– Stateless (“RESTful”): if crash can reconnect the

user to another server
– Run application code that is rapidly changing
– Q: how does user find a front-end?

• Scalable number of back-end database servers
– Run carefully designed distributed systems code
– If crash, system remains available
– Q: how do servers coordinate updates?

Three-tier Architecture

• Scalable number of front-end web servers
– Stateless (“RESTful”): if crash can reconnect the

user to another server
• Scalable number of cache servers
– Lower latency (better for front end)
– Reduce load (better for database)
– Q: how do we keep the cache layer consistent?

• Scalable number of back-end database servers
– Run carefully designed distributed systems code

And Beyond

• Worldwide distribution of users
– Cross continent Internet delay ~ half a second
– Amazon: reduction in sales if latency > 100ms

• Many data centers
– One near every user
– Smaller data centers just have web and cache layer
– Larger data centers include storage layer as well
– Q: how do we coordinate updates across DCs?

Properties We Want
(Google Paper)

• Fault-Tolerant: It can recover from component
failures without performing incorrect actions.
(Lab 2)

• Highly Available: It can restore operations,
permitting it to resume providing services
even when some components have failed.
(Lab 3)

• Scalable: It can operate correctly even as
some aspect of the system is scaled to a larger
size. (Lab 4)

Typical Year in a Data Center
• ~0.5 data centers fail per year due to overheating
• ~1 power distribution failure (~500-1000 machines offline)
• ~1 rack-move (~500-1000 machines powered down)
• ~1 network rewiring (rolling outage of ~5% of machines down)
• ~20 rack failures (40-80 machines instantly disappear)
• ~5 racks go wonky (40-80 machines see 50% packet loss)
• ~8 network maintenances (random connectivity losses)
• ~12 router reloads
• ~3 router failures
• ~dozens of 30-second DNS outages
• ~1000 individual machine failures
• ~1000+ hard drive failures
• slow disks, bad memory, misconfigured machines, flaky

machines, …

Other Properties We Want
(Google Paper)

• Consistent: The system can coordinate actions
by multiple components often in the presence
of concurrency and failure. (Labs 2-4)

• Predictable Performance: The ability to
provide desired responsiveness in a timely
manner. (Week 8)

• Secure: The system authenticates access to
data and services (CSE 484)

Next Time: Remote Procedure Call

• Remote procedure call (RPC)
– Abstraction of a procedure call, with arguments

and return values
– Executed on a remote node

• Challenges
– Remote node might have failed
– Network may have failed
– Request may be dropped
– Reply may be dropped

Thought Experiment

• Client sends a request to Amazon
• Network is flaky
– Don’t hear back for a second

• Can you tell?
– Request was lost
– Server was down
– Request got through, reply was lost

• Should the client resend?

Thought Experiment

• The client resends
• But the original packet got through
• What should the server do?
– Crash?
– Do the operation twice?
– Something else?

Why Is DS So Hard?

• System design
– Partitioning of responsibilities: what should client do, the

caching layer, the storage layer?
• Failures are endemic, partial and ambiguous
– If a server doesn’t reply, how do you tell if it is (a) the

network, (b) the server, or c) neither: they are both just
being slow?

• Concurrency and consistency
– Distributed state, replicated state, caching
– How do we keep this state consistent?

Why Is DS So Hard?

• Performance
– Generating a single FB page involves calls to hundreds

of different machines
– Performance can be variable and unpredictable
– Tail latency: limited by slowest machine

• Implementation and testing
– Nearly impossible to test/reproduce all failure cases

• Security
– Adversary can silently compromise machines and

manipulate messages

Why Are Distributed Systems Hard?

• Asynchrony
– Different nodes run at different speeds
– Messages can be unpredictably, arbitrarily delayed

• Failures (partial and ambiguous)
– Parts of the system can crash
– Can’t tell crash from slowness

• Concurrency and consistency
– Replicated state, cached on multiple nodes
– How to keep many copies of data consistent?

Why Are Distributed Systems Hard?

• Performance
– Have to efficiently coordinate many machines
– Performance is variable and unpredictable
– Tail latency: only as fast as slowest machine

• Testing and verification
– Almost impossible to test all failure cases
– Proofs (emerging field) are really hard

• Security
– Need to assume adversarial nodes

Another Thought Experiment:
Local vs. Remote Operations

• How long does it take to do a simple
procedure call on a modern server?

• How long does it take to do the same
operation on a different server in the same
data center?

• On a server in a remote data center?
– Speed of light is ~ 5us/mile

