. amport Clocks

Lamport Clocks

Framework for reasoning about event ordering
Assign timestamps to events

- Globally valid

- Respects causality

- Using only local information

- No physical clock

What does it mean for a to happen before b?

Happens-before

1. Happens earlier at same location
2. Transmission before receipt

3. Transitivity

Example

recv M
sendl\/l/

ST S2

/ recv M
end M’)

S3

Logical clock implementation

Keep a local clock T

ncrement T whenever an event happens

Send clock value on all messages as T

On message receipt: T= max(T, Tm) + 1

Example

E(T = ?)
/ recv M’ (T
send M’ (Tm = ?) D (T=7)
C(T="7)

B (T="7)

/ recv M (T = ?)

send M (Tm = 7?)
A(T="7)

ST S2 S3

Example

E(T = ?)
/ recv M’ (T
send M’ (Tm = ?) D (T=7)
C(T="7)

B (T="7)

/ recv M (T = ?)

send M (Tm = 7?)
A(T=1)

ST S2 S3

Example

E(T = ?)
/ recv M’ (T
send M’ (Tm = ?) D (T=7)
C(T="7)

B (T="7)

/ recv M (T = ?)

send M (Tm = 2)
A(T=1)

ST S2 S3

Example

E(T = ?)
/ recv M’ (T
send M’ (Tm = ?) D (T=7)
C(T="7)

B (T = 3)

/ recv M (T = ?)

send M (Tm = 2)
A(T=1)

ST S2 S3

Example

B (T = 3)

Y~

send M (Tm = 2)
A(T=1)

ST

e T

send M’ (T =
C(T=7°)

recv M (T = 3)

S2

E(T = ?)
recv M’ (T
D (T = ?)

S3

Example

B (T = 3)

Y~

send M (Tm = 2)
A(T=1)

ST

e T

send M’ (T =
C (T = 4)

recv M (T = 3)

S2

E(T = ?)
recv M’ (T
D (T = ?)

S3

Example

B (T = 3)

Y~

send M (Tm = 2)
A(T=1)

ST

L

send M’ (Trn = 5)

C(T=4)
recv M (T = 3)
S2

E(T = ?)
recv M’ (T
D (T = ?)

S3

Example

B (T = 3)

Y~

send M (Tm = 2)
A(T=1)

ST

L

send M’ (Trn = 5)

C(T=4)
recv M (T = 3)
S2

E(T = ?)
recv M’ (T
D (T = 1)

S3

Example

E(T="7)
/ recv M’ (T = 6)
send M’ (Trn = 5) D (T=1)

C (T = 4)
B (T = 3)

/ recv M (T = 3)

send M (Tm = 2)
A(T=1)

ST S2 S3

Example

E(T=7)
/ recv M’ (T = 6)
send M’ (Trn = 5) D (T=1)

C (T = 4)
B (T = 3)

/ recv M (T = 3)

send M (Tm = 2)
A(T=1)

ST S2 S3

Goal of Lamport clocks

happens-before(A, B) -> T(A) < T(B)

Does T(A) < T(B) -> happens-before(A, B)?

Mutual exclusion

Use clocks to implement a lock

- Using state machine replication
Goals:

- Only one process has the lock at a time

- Requesting processes eventually acquire the lock
Assumptions:

- In-order point-to-point message delivery

- No failures, all messages delivered

Mutual exclusion implementation

Each message carries a timestamp Tm (and a seq #)
Three message types:

- request (broadcast)

- release (broadcast)

- acknowledge (on receipt)
Each node’s state:

- A queue of request messages, ordered by Tm

- The latest message it has received from each node

Mutual exclusion implementation

On receiving a request:
- Record message timestamp
- Add request to queue

On receiving a release:

- Record message timestamp

- Remove corresponding request from queue
On receiving an acknowledge:

- Record message timestamp

Mutual exclusion implementation

To acquire the lock:
- Send request to everyone, including self
- The lock Is acquired when:
- My request is at the head of my queue, and

- I've received higher-timestamped messages
from everyone

- SO my request must be the earliest

ST
/ \

L i

Timestamp: O
Queue: [S1@0]
S2max: O

S3max: O

S2
/ \

(TSI

Timestamp: O
Queue: [S1@0]
S1max: O

S3max. 0

S3
/ \

e i

Timestamp: O
Queue: [S1@0]
S1max: O

S2max: O

Timestamp: 1
Queue: [S1@0]

S2 Simax: O
[4IIIIIIIII9IIIIIIIIIII\] S3max: 0
request@1 request@1
S S3
/ \ / \
[imme i | Limne i |
Timestamp: O Timestamp: O
Queue: [S1@0] Queue: [S1@0]
SZmax: 0 S1max: 0

S3max. O S2max. O

Timestamp:1
Queue: [S1@0; S2@1]

S2 Simax O
[4umnnemuulm\] S3max: O
ST S3
/ \ / \
Linnnme i | L i |
Timestamp: 2 Timestamp: 2
Queue: [S1@0; S2@1] Queue: [S1@0; S2@1]
SZmax: 1 S1max: 0

SSmax: 0 SZmax: 1

Timestamp:1
Queue: [S1@0; S2@1]

S2 S1max O
[4IIIIIIIII9IIIIIIIIIII\] SSmax: O
ack@s3 ack@3
S S3
/ \ / \
Linne | Linnme i
Timestamp: 3 Timestamp: 3
Queue: [S1@0; S2@1] Queue: [S1@0; S2@1]
SZmax: 1 S1max: 0

SSmax: 0 SZmax: 1

Timestamp:4
Queue: [S1@0; S2@1]

S2 Stmax 3
[4umnnemuulm\] S3max: 3
ST S3
/ \ / \
(IS i) (IS)
Timestamp: 3 Timestamp: 3
Queue: [S1@0; S2@1] Queue: [S1@0; S2@1]
SZmax: 1 S1max: 0

SSmax: 0 SZmax: 1

Timestamp:4
Queue: [S1@0; S2@1]

S2 Simax: 3
[4IIIIIIIII9IIIIIIIIIII\] SSmax: 3
release@4
ST release@4 S3
/ \ / \
[imme i | Limne i |
Timestamp: 4 Timestamp: 3
Queue: [S1@0; S2@1] Queue: [S1@0; S2@1]
SZmax: 1 S1max: 0

SSmax: 0 SZmax: 1

ST
/ \

L i

Timestamp: 4
Queue: [S2@1]
S2max: 1

S3max: O

S2
/ \

(TSI

Timestamp:5
Queue: [S2@1]
S1max: 4

S3max: 3

S3
/ \

e i

Timestamp: 5
Queue: [S2@1]
S1max: 4

S2max: 1

Timestamp:6
Queue: [S2@1]

82 81 max. 4
[4IIIIIIIII9IIIIIIIIIII\] S3max: 3
ack@o
ST ack@6 S3
/ \ < / \
Linnnme i | L i |
Timestamp: 4 Timestamp: 6
Queue: [S2@1] Queue: [S2@1]
S2Pmax: 1 Slmax: 4

SSmax: 0 SZmax: 1

ST
/ \

L i

Timestamp: 6
Queue: [S2@1]
S2max. 6

S3max: 6

S2
/ \

(TSI

Timestamp:6
Queue: [S2@1]
S1max: 4

S3max: 3

S3
/ \

e i

Timestamp: ©
Queue: [S2@1]
S1max: 4

S2max: 1

Questions

 What happens if you don’t have in-order delivery?

 What happens if you eliminate the ack for the
request?

* What happens when nodes fail?

Generic State Machine Replication (SMR)

In mutual exclusion:

e State: gueue of processes who want the lock
« Commands: Pirequests, P;releases
Approach generalizes to other “state machines’

Process a command iff we’ve seen all commands w/
lower timestamp

