
Lamport Clocks

Lamport Clocks

Framework for reasoning about event ordering

Assign timestamps to events

- Globally valid

- Respects causality

- Using only local information

- No physical clock

What does it mean for a to happen before b?

Happens-before

1. Happens earlier at same location

2. Transmission before receipt

3. Transitivity

Example

S1 S2 S3

A

B

send M

recv M

C
send M’

recv M’
D

E

Logical clock implementation

Keep a local clock T

Increment T whenever an event happens

Send clock value on all messages as Tm

On message receipt: T = max(T, Tm) + 1

Example

S1 S2 S3

A (T = ?)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = ?)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = 1)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = 7)

Goal of Lamport clocks

happens-before(A, B) -> T(A) < T(B)

Does T(A) < T(B) -> happens-before(A, B)?

Mutual exclusion

Use clocks to implement a lock

- Using state machine replication

Goals:

- Only one process has the lock at a time

- Requesting processes eventually acquire the lock

Assumptions:

- In-order point-to-point message delivery

- No failures, all messages delivered

Mutual exclusion implementation

Each message carries a timestamp Tm (and a seq #)

Three message types:

- request (broadcast)

- release (broadcast)

- acknowledge (on receipt)

Each node’s state:

- A queue of request messages, ordered by Tm

- The latest message it has received from each node

Mutual exclusion implementation

On receiving a request:

- Record message timestamp

- Add request to queue

On receiving a release:

- Record message timestamp

- Remove corresponding request from queue

On receiving an acknowledge:

- Record message timestamp

Mutual exclusion implementation

To acquire the lock:

- Send request to everyone, including self

- The lock is acquired when:

- My request is at the head of my queue, and

- I’ve received higher-timestamped messages
from everyone

- So my request must be the earliest

S1

S2

S3

Timestamp: 0
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

S1

S2

S3

Timestamp: 1
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

request@1 request@1

S1

S2

S3

Timestamp:1
Queue: [S1@0; S2@1]
S1max: 0
S3max: 0

Timestamp: 2
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 2
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

S1

S2

S3

Timestamp:1
Queue: [S1@0; S2@1]
S1max: 0
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

ack@3 ack@3

S1

S2

S3

Timestamp:4
Queue: [S1@0; S2@1]
S1max: 3
S3max: 3

Timestamp: 3
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

S1

S2

S3

Timestamp:4
Queue: [S1@0; S2@1]
S1max: 3
S3max: 3

Timestamp: 4
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

release@4

release@4

S1

S2

S3

Timestamp:5
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 4
Queue: [S2@1]
S2max: 1
S3max: 0

Timestamp: 5
Queue: [S2@1]
S1max: 4
S2max: 1

S1

S2

S3

Timestamp:6
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 4
Queue: [S2@1]
S2max: 1
S3max: 0

Timestamp: 6
Queue: [S2@1]
S1max: 4
S2max: 1

ack@6

ack@6

S1

S2

S3

Timestamp:6
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 6
Queue: [S2@1]
S2max: 6
S3max: 6

Timestamp: 6
Queue: [S2@1]
S1max: 4
S2max: 1

Questions

• What happens if you don’t have in-order delivery?
• What happens if you eliminate the ack for the

request?
• What happens when nodes fail?

Generic State Machine Replication (SMR)

In mutual exclusion:
• State: queue of processes who want the lock
• Commands: Pi requests, Pi releases

Approach generalizes to other “state machines"

Process a command iff we’ve seen all commands w/
lower timestamp

