
Weakly Consistent and
Disconnected Operation

Linearizability Recap
Everyone sees same order of read/write operations

○ cache coherence, Paxos
Release consistency/fsync:

○ at memory barriers/lock/unlock, wait for all
reads/writes to complete

Need a different model for always available writes
○ Disconnected operation (Bayou, git)
○ Massive scale (DNS)
○ Low latency even during failures (Dynamo)

Why Disconnected Operation?
Apps that work offline/intermittent connectivity

○ Most productivity apps: gmail, google docs, etc.
○ Data updated locally, merged later

File synchronization across users / devices
○ Dropbox: data updated continuously

Source code control (cvs, git)
○ Update data locally, explicit merges

● Writes can conflict, merge later

Two Models for Disconnected Apps

● Applications only communicate with the cloud
(Coda, SVN)

○ Log changes, apply on reconnect

● Applications can communicate with cloud and
each other (Bayou, git)

○ Log changes, replicas exchange logs and merge

○ Merge again when connect to new replica

Coda

● File system that supports disconnected
operation of laptops, PDAs
○ Local file system partial replica of global one
○ System tried to pre-cache everything you might

need
● While disconnected, log every modification

○ Like a write ahead log
● Merge on reconnection

○ Reconnection applied atomically

Coda Merge

● On reconnect, merge by applying changes from
client log
○ Bring client up to date by applying server log

● If no one else has modified data in the meantime
○ Ex: clients working in different directories
○ Apply changes from log in log order

● What if two clients modify the same data?
○ Apply changes that don’t conflict
○ Flag changes that require manual intervention

Application-specific Merge

● What happens if two disconnected nodes make
conflicting updates?

● Detect when merging changes back onto server
● For each change (in Coda)

○ If to different files, ok
○ If create/delete/rename, ok if to different files
○ If changes to same file, app-specific merge

● Merging easier if operational log at app-level
○ Versus logging data structures with changes in them

Bayou

Xerox PARC project to build the first practical PDAs

Collaborative apps with partial and limited
connectivity

○ Sometimes no connectivity

○ Sometimes only peer-to-peer connectivity

○ Sometimes peer-to-server connectivity

Forced to address the general problem

Source Code Control
● Eventual Consistency

○ Read/write local copy
○ Fix conflicts later

● Track history (with metadata)
● Concurrent editing / Many

contributors
● Working copy: files don’t

change beneath you
○ Push / Pull to server/peers
○ Contributors may be offline /

disconnected

CVS (1990)
● Client-server model

○ Check out working copy
○ Check in your changes

● Server arbitrates order
○ Only accept changes to the

most recent version
○ Developers must always

keep their files up to date

Server

file1:
● revision: 1.2

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.2

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.2

file2:
● revision: 1.10

checkout

Server

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.2

file2:
● revision: 1.10

commit
file1 r1.3

Edit file1

Server

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.11

Commit file1 file2
FAILS

Edit file1,
file2

Server

file1:
● revision: 1.4

file2:
● revision: 1.11

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3 =>

1.4
file2:
● revision: 1.11

update file1
r1.3

Fix file1
conflicts

commit file1 file2
SUCCEEDS

CVS Limitations
● Everyone edits the same repository

○ How does a subgroup implement a complex feature?
● No local version control

○ cvs commit ~ git commit && git push
● No log/ time travel
● No versioning of moving / renaming files
● Depends on live server to operate

○ Scaled / backed up / reachable
● Branches were expensive
● Updates not atomic (!)

Apache SVN (2000)
● Improvements

○ Atomic commits
○ Renamed / moved / copied files retain version

history
○ Versioning of directories and metadata
○ Cheap branches / tagging

● Centralized - server/client architecture
● Still active

○ All of Facebook’s source code was in a single SVN
repository until 2014

Commit Log

A:0 A:1 A:2 A:3 A:4 A:5

Branching

A:0 A:1 A:2 A:3 A:4 A:5

B:1 B:1 B:1

Merging

A:0 A:1 A:2 A:3 A:4 A:5

B:1 B:2 B:3

A:5 Ancestry Set
{A: 0-4, B:1-3}

Conflicting updates detected with vector clocks
What then?

Merge Conflicts
Easy: create/delete/rename different files in
directory => union of changes

Medium: changes to different lines of text file =>
diff+patch
Change to file that has been renamed => apply

Hard: changes to the same line of C source => ask
user to fix

Another option: operational transforms

Merging and Causal Ordering

Example:
C1: f=1 -> C2
C2: f=2 -> C3
C3: f=3 -> C1

Example:
C1: a=1 -> C2
C2: b=2 -> C3
C3: c=3 -> C1

Operations that potentially are causally related
are seen by every node of the system in the same
order

Merging

A:0 A:1 A:2 A:3 A:4 A:5

B:1 B:2 B:3

A:6

B:4

A:6 Ancestry Set
{A: 0-5, B:1-4}

A:5 Ancestry Set
{A: 0-4, B: 1-3}

B:4 Ancestry Set
{B: 1-3}

Garbage Collection

● When is it safe to garbage collect the log of
changes?

git (2005)
● Distributed!

○ Everyone is a replica
● Consistency and performance

○ Protects from memory, disk
corruption

● Cheap branches / merges
● .git/

○ Config
○ Content-addressable filesystem
○ Log of changes (commit history)

Logs (Commit Histories)
● Complete log of changes (needed for time

travel with source code control)
○ Directed acyclic graphs (DAG)

● commit
○ parents
○ deltas (changes to content)
○ hash - for consistency
○ metadata

Content Addressable Filesystem
.git/objects

Git Example

$ git init
$ echo “version 1” > test.txt
$ git add test.txt
$ git commit -m “first commit”

$ echo “version 2” > test.txt
$ echo “new file” > new.txt
$ git add ./
$ git commit -m “second commit”

$ mkdir bak
$ echo “version 1” > bak/test.txt
$ git add bak/
$ git commit -m “third commit”

