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CONSENSUS

𝑛 processes, all of which have an input value from some domain. 

Processes output a value by calling decide(𝑣).  

Non-faulty processes continue correctly executing protocol steps forever. 

We denote the number of faulty processes 𝑓.  

• Agreement: No two correct processes decide different values. 

• Integrity: Every correct process decides at most one value, and if a 

correct process decides a value 𝑣, some process had 𝑣 as its input. 

• Termination: Every correct process eventually decides a value.



BINARY CONSENSUS

𝑛 processes, all of which have an input value from {0, 1}. Processes output a 
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Non-faulty processes continue correctly executing protocol steps forever. We 

denote the number of faulty processes 𝑓. Here, we only consider crash 
failures. 
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• Integrity: Every process decides at most one value, and if a process 

decides a value 𝑣, some process had 𝑣 as its input. 
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value by calling decide(𝑣).  

Non-faulty processes continue correctly executing protocol steps forever. We 

denote the number of faulty processes 𝑓. Here, we only consider crash 
failures. 

• Agreement: No two processes decide different values. 

• Integrity: Every process decides at most one value, and if a process 

decides a value 𝑣, some process had 𝑣 as its input. 

• Termination: Every correct process eventually decides a value.

If you can solve consensus, 
you can solve binary 

consensus.



Aside: Both safety and liveness properties are 
necessary to create a meaningful specification!



Theorem (FLP Impossibility Result): In an 
asynchronous environment in which a single 
process can fail by crashing, there does not exist a 
protocol which solves binary consensus.



INTUITION

• In an asynchronous setting, failed processes are 
indistinguishable from slow processes. 

• Waiting for failed processes will take forever. 

• Not waiting for slow processes could violate 
safety.
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Makes the impossibility 
result is stronger!



CONFIGURATIONS

A configuration (usually denoted 𝐶) consists of the states of all 
processes and the state of the message buffer. 

An event is the delivery of a single message (or ∅) to a process. An 

event is applicable to 𝐶 if it is a ∅ or a message in 𝐶's message buffer. 

A configuration 𝐶ʹ is reachable from 𝐶 if there is a (possibly empty) 

sequence of applicable events starting from 𝐶 that results in 𝐶ʹ. 

Configuration 𝐶 is decided if at least one process has decided in 𝐶.



RUNS

A run is an infinite sequence of events starting 
from an initial configuration. 

A process is non-faulty in a run if it takes infinitely 
many steps. It is faulty otherwise. 

A run is admissible if at most one process is faulty 
and every message sent to a non-faulty process is 
eventually delivered.



In other words, the FLP theorem states that 
any protocol for binary consensus either 
doesn't satisfy safety or allows for an 
admissible run in which no value is ever 
decided (i.e., that it doesn't satisfy termination, 
the liveness property). 

From now on, we'll consider a safe and live 
binary consensus protocol and show a 
contradiction.



VALENCY

By assumption of safety, no configuration has 
processes deciding different values. 

𝐶 is 0-valent if there are decided configurations 

reachable from 𝐶 that decide 0, but none that decide 1.  

1-valency is defined in the analogous way. 

𝐶 is univalent if it is 0-valent or 1-valent. 

𝐶 is bivalent if both 0-deciding and 1-deciding are 

reachable from 𝐶.
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Observation: bivalent configurations 
are not themselves decided.



Observation: 1-valent and bivalent configurations 
are not reachable from 0-valent configurations.  

0-valent and bivalent configurations are not 
reachable from 1-valent configurations.



COMMUTATIVE EVENTS
Lemma 1: If two sequences of events, 𝜎1 and 𝜎2, are taken by disjoint 

sets of processes from configuration 𝐶, then 𝜎1(𝜎2(𝐶)) = 𝜎2(𝜎1(𝐶)).

𝐶
𝜎1

𝜎1𝜎2

𝜎2 p1

p2

p3

p4

𝐶
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BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

There must be 0-valent 𝐶0 and  
1-valent 𝐶1 that differ only in the 

input value of a single process, 𝑝.

What if 𝑝 crashes at the beginning?

These two configurations are 
indistinguishable to the rest of the 
processes.

1→𝑝 ⇒ 1 is decided 

0→𝑝 ⇒ 0 is decided



DELAYING EVENTS

Lemma 3 (The Delay Lemma): For every bivalent 

configuration, 𝐶, and every event applicable to 𝐶, 𝑒, 

there exists a sequence of applicable events 𝜎 such 

that 𝐶ʹ = 𝑒(𝜎(𝐶)) is bivalent.

𝐶 𝐶ʹ
𝜎 𝑒
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Constructing the non-terminating 
execution:

1: Let 𝐶 be a bivalent initial 
configuration (Lemma 2).

2: For the process which least recently 
took a step, take the oldest message 
left in the network for it (∅ if none 

exists), 𝑒. By Lemma 3, we first take a 

sequence of steps 𝜎 and then deliver 𝑒 
and remain in a bivalent configuration.

3: Go to 2.

Every process takes infinitely 
many steps (i.e., no process is 
faulty). Every message sent is 
eventually delivered. This is 
an admissible execution. 

We take infinitely many steps, 
and no process decides! The 
protocol fails to meet the 
termination property of the 
spec.

𝐶

𝐶ʹ

𝜎

𝑒

𝐶ʹʹ

𝑒ʹ

𝜎ʹ

. .
 .



PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and 

an applicable event, 𝑒.



PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and 

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.



PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and 

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events 

reachable from 𝐶 without applying 𝑒 and 

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of 

all configurations reachable from 𝐶 where 

𝑒 was the last event taken).



PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and 

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events 

reachable from 𝐶 without applying 𝑒 and 

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of 

all configurations reachable from 𝐶 where 

𝑒 was the last event taken).

𝐶

𝒞



PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and 

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events 

reachable from 𝐶 without applying 𝑒 and 

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of 

all configurations reachable from 𝐶 where 

𝑒 was the last event taken).

𝐶

𝒞

𝑒



PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and 

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events 

reachable from 𝐶 without applying 𝑒 and 

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of 

all configurations reachable from 𝐶 where 

𝑒 was the last event taken).

𝐶

𝒞

𝒟

𝑒



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

𝒞

𝒟

𝑒

𝐶



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

𝒞

𝒟

𝑒

𝐶



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

𝒞

𝒟

𝑒

𝐶



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

1. In 𝒟,

𝒞

𝒟

𝑒

𝐶



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

1. In 𝒟,

𝒞

𝒟

𝑒

𝐶

0



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

𝒞

𝒟

𝑒

𝐶

0



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

𝒞

𝒟

𝑒

𝐶

0



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

𝒞

𝒟

𝑒

𝐶

0

0



PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration. 
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and 
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and 
1-valent configurations. For each, this configuration is 
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

3. Or past 𝒟 (the ancestor in 𝒟 must also be of the 
same valency since it's not bivalent by 
assumption).
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PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

𝒞

𝒟

𝑒

𝐶

0



PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟, 

there must be a path from 𝐶 to one of these.

𝒞

𝒟

𝑒

𝐶

0



PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟, 

there must be a path from 𝐶 to one of these.

𝒞

𝒟

𝑒

𝐶

0
1



PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟, 

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations, 

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is 
1-valent.

𝒞

𝒟

𝑒

𝐶

0
1



PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟, 

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations, 

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is 
1-valent.

𝒞

𝒟

𝑒

𝐶

0
1

01

𝐶1

𝐶0



PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟, 

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations, 

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is 
1-valent.

Let's call the event that takes 𝐶0 to 𝐶1 𝑔.

𝒞

𝒟

𝑒

𝐶

0
1

01

𝐶1

𝐶0



PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss 
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟, 

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations, 

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is 
1-valent.

Let's call the event that takes 𝐶0 to 𝐶1 𝑔.

𝒞

𝒟

𝑒

𝐶

0
1

01

𝐶1

𝐶0𝑔



PROVING THE DELAY LEMMA

Almost done! First, we will show that 
the processes taking steps 𝑒 and 𝑔 
must be the same process.
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Almost done! First, we will show that 
the processes taking steps 𝑒 and 𝑔 
must be the same process.

If not, 𝑔 is applicable to 𝑒(𝐶0) and 
results in a 1-valent configuration 
(Lemma 1).

Let's call the process taking these 

steps 𝑝.
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PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates 
one failure, it must be able to reach a 
decided configuration, 𝐴, without 𝑝 
taking steps.
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IS IT OVER? DO WE GIVE UP NOW?

Options: 

• Only guarantee termination during periods of synchrony 
(Paxos); implies that no configuration is ever dead 

• Use randomization to guarantee termination with probability 
1 (Ben-Or) 

• Strengthen the assumptions (consensus is solvable in a 
synchronous system) 

• Constrain/weaken the problem
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• 𝒌-set Agreement: allows up to 𝑘 different 
decision values 

• Generalized Lattice Agreement: processes 
decide on sets of values, all decision sets are 
comparable by ⊆ 

• Shared read/write register: processes can read 
and write to a register
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• Generalized Lattice Agreement: processes 
decide on sets of values, all decision sets are 
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Still can't guarantee liveness 
when 𝑓 ≥ 𝑘

Solvable, can guarantee both 
safety and liveness! Of 

questionable utility.

Also solvable! 
And useful!


