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How Do WE SPECIFY DISTRIBUTED SYSTEMS?

- Execution: Sequence of events (i.e., steps taken by the
system), potentially infinite.

» Property: A predicate on executions.

. Safety property: Specifies the "bad things" that shouldn't
happen in any execution.

 Liveness property: Specifies the "good things" that should
happen in every execution.

(See paper for formal definitions.)
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CONJUNCTION OF A SAFETY PROPERTY AND A LIVENESS
PROPERTY.
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SOME PROPERTIES

. The system never deadlocks.

- Every client that sends a request eventually gets
a reply.

- Both generals attack simultaneously.



MORE PROPERTIES: CONSENSUS

n processes, all of which have an input value from some domain.

Processes output a value by calling decide(v). Non-faulty processes
continue correctly executing protocol steps forever. We usually denote

the number of faulty processes f.

- Agreement: No two correct processes decide different values.

- Integrity: Every correct process decides at most one value, and if a
correct process decides a value v, some process had v as its input.

- Termination: Every correct process eventually decides a value.



CONSISTENCY IS KEY!

Consistency: the allowed semantics (return values)
of a set of operations to a data store or shared object.

Consistency properties specify the interface, not
the implementation. The data might be
replicated, cached, disaggregated, etc. "Weird"
consistency semantics happen all over the stack!

Anomaly: violation of the consistency semantics



TERMINOLOGY: STRENGTH AND WEAKNESS

. Strong consistency: the system behaves as if there's just a
single copy of the data (or almost behaves that way).

The intuition is that things like caching and sharding are
implementation decisions and shouldn't be visible to clients.

. Weak consistency: allows behaviors significantly different
from the single store model.

- Eventual consistency: the aberrant behaviors are only
temporary.



WHY THE DIFFERENCE?

« Performance

- Consistency requires synchronization/coordination when
data is replicated

- Often slower to make sure you always return right answer
- Availability

- What if client is offline, or network is not working?

- Weak/eventual consistency may be only option
- Programmability

- Weaker models are harder to reason against



LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

. safe: a read not concurrent with any write
obtains the previously written value

- regular: safe + a read that overlaps a write
obtains either the old or new value

. atomic: safe + reads and writes behave as if
they occur in some definite order
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LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
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read.

Semantics defined in terms of the real-time
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. atomic: safe + reads and writes behave as if

they occur in some definite order (3 = a .rs SC b
(r > b=r3 = b)



SEQUENTIAL CONSISTENCY

. Applies to arbitrary shared objects.

- Requires that a history of operations be
equivalent to a legal sequential history, where a
legal sequential history is one that respects the
local ordering at each node.

- Called serializability when applied to
transactions
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LINEARIZABILITY

Linearizability = sequential consistency +
respects real-time ordering.

If e1 ends before e; begins, then e; appears before

ez in the sequential history.

Linearizable data structures behave as if there's a
single, correct copy.



Atomic registers are linearizable.
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IS IT LINEARIZABLE?
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LINEARIZABILITY VS. SEQUENTIAL CONSISTENCY

. Sequential consistency allows operations to
appear out of real-time order. How could that
happen in reality?



LINEARIZABILITY VS. SEQUENTIAL CONSISTENCY

. Sequential consistency allows operations to
appear out of real-time order. How could that
happen in reality?

- The most common way systems are sequentially
consistency but not linearizability is that they
allow read-only operations to return stale data.
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CAUSAL CONSISTENCY

- Writes that are not concurrent (i.e., writes related
by the happens-before relation) must be seen in
that order. Concurrent writes can be seen in
different orders on different nodes.
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- Writes that are not concurrent (i.e., writes related
by the happens-before relation) must be seen in
that order. Concurrent writes can be seen in
different orders on different nodes.

- Linearizability implies causal consistency.



IS IT CAUSAL?
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IS IT CAUSAL?
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IS IT CAUSAL?

YES!
D But not sequential.
pz*
D3
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IS IT CAUSAL?

Not causall
(or sequential)




Cool Theorem: Causal consistency* is the strongest form of

consistency that can be provided in an always-available convergent
system.

Basically, if you want to process writes even in the presence of network
partitions and failures, causal consistency is the best you can do.

[Mahajan et al. UTCS TR-1 [-22] *real-time causal consistency



WE CAN GET WEAKER!

. FIFO Consistency: writes done by the same
process are seen in that order; writes to different
processes can be seen in different orders.
Equivalent to the PRAM model.

. Eventual Consistency = if all writes to an object
stop, eventually all processes read the same
value. (Not even a safety property! "Eventual
consistency is no consistency.’)



IS IT FIFO?
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Is IT FIFO?

YES!
(but still not causal)
(or sequential)
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Is IT FIFO?

Not FIFO!
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Lamport's register semantics, sequential
consistency, linearizability, and causal consistency,
and FIFO consistency are all safety properties.



USING CONSISTENCY GUARANTEES

Thread 1 Thread 2
gi= b =1
print("b:" + b) print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?



USING CONSISTENCY GUARANTEES

Depends on
Thread 1 Thread 2 memory
consistency!
a. = b =1
print("b:" + b) print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?



USING CONSISTENCY GUARANTEES

Thread 1 Thread 2
gi= b =1
print("b:" + b) print("a:" + a)

Suppose both prints output O.



USING CONSISTENCY GUARANTEES

Thread 1 Thread 2

Suppose both prints output O.

Then there's a cycle in the happens-before graph.
Not sequential!



ASIDE: JAVA'S MEMORY MODEL

- Java is not sequentially consistent!

- It guarantees sequential consistency only when
the program is data-race free.

- A data-race occurs when two threads access the
same memory location concurrently, one of the
accesses is a write, and the accesses are not
protected by locks (or monitors etc.).



A COMMON (INCORRECT) IDIOM

class Foo {
private Bar bar = null;

public void baz() {
1f (bar == null)
synchronized(this) {
if (bari== null) {
bar = new Bar();
}

¥

}
bar.doAThing();



A COMMON (INCORRECT) IDIOM, CORRECTED

class Foo {
private volatile Bar bar = null;

public void baz() {

if (bar == null) { volatile = accesses are

Syg‘ghgggﬁziﬂ(ﬁﬂﬁg % sequentially consistent
bar = new Bar();
}

}

}

bar .doAThing();

}



A COMMON (INCORRECT) IDIOM, CORRECTED

class Foo {
private volatile Bar bar = null;

public void baz(
tF-(bar == nul
synchronized

Reminder: you don't need to worry

about multi-threaded access for the labs! SRR
ally consistent

if (bar ==
LIMERNE (except not grabbing locks in equals and
} } hashCode)
}
bar.doAThing();



How TO USE WEAK CONSISTENCY?

. Separate operations with stronger semantics,
weak consistency (and high performance) by
default

. Application-level protocols, either using
separate communication, or extra
synchronization variables in the data store (not
always possible)



MAIN TAKEAWAYS

. The weaker the consistency model, the harder it
is to program against (usually).

- The stronger the model, the harder it is to
enforce (again, usually).



