SAFETY, LIVENESS, AND CONSISTENCY

Ellis Michael

How Do WE SPECIFY DISTRIBUTED SYSTEMS?

- Execution: Sequence of events (i.e., steps taken by the
system), potentially infinite.

» Property: A predicate on executions.

. Safety property: Specifies the "bad things" that shouldn't
happen in any execution.

 Liveness property: Specifies the "good things" that should
happen in every execution.

(See paper for formal definitions.)

THEOREM: EVERY PROPERTY IS EXPRESSIBLE AS THE
CONJUNCTION OF A SAFETY PROPERTY AND A LIVENESS
PROPERTY.

Alpern and Schneider. 1987/]

THEOREM: EVERY PROPERTY IS EXPRESSIBLE AS THE
CONJUNCTION OF A SAFETY PROPERTY AND A LIVENESS
PROPERTY.

Alpern and Schneider. 1987/]

SOME PROPERTIES

. The system never deadlocks.

- Every client that sends a request eventually gets
a reply.

- Both generals attack simultaneously.

MORE PROPERTIES: CONSENSUS

n processes, all of which have an input value from some domain.

Processes output a value by calling decide(v). Non-faulty processes
continue correctly executing protocol steps forever. We usually denote

the number of faulty processes f.

- Agreement: No two correct processes decide different values.

- Integrity: Every correct process decides at most one value, and if a
correct process decides a value v, some process had v as its input.

- Termination: Every correct process eventually decides a value.

CONSISTENCY IS KEY!

Consistency: the allowed semantics (return values)
of a set of operations to a data store or shared object.

Consistency properties specify the interface, not
the implementation. The data might be
replicated, cached, disaggregated, etc. "Weird"
consistency semantics happen all over the stack!

Anomaly: violation of the consistency semantics

TERMINOLOGY: STRENGTH AND WEAKNESS

. Strong consistency: the system behaves as if there's just a
single copy of the data (or almost behaves that way).

The intuition is that things like caching and sharding are
implementation decisions and shouldn't be visible to clients.

. Weak consistency: allows behaviors significantly different
from the single store model.

- Eventual consistency: the aberrant behaviors are only
temporary.

WHY THE DIFFERENCE?

« Performance

- Consistency requires synchronization/coordination when
data is replicated

- Often slower to make sure you always return right answer
- Availability

- What if client is offline, or network is not working?

- Weak/eventual consistency may be only option
- Programmability

- Weaker models are harder to reason against

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

. safe: a read not concurrent with any write
obtains the previously written value

- regular: safe + a read that overlaps a write
obtains either the old or new value

. atomic: safe + reads and writes behave as if
they occur in some definite order

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

; : safe=r; 2 a
. safe: a read not concurrent with any write

obtains the previously written value

- regular: safe + a read that overlaps a write
obtains either the old or new value

. atomic: safe + reads and writes behave as if
they occur in some definite order

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

; : safe=r; 2 a
. safe: a read not concurrent with any write

obtains the previously written value
regular=r; 2 aA(r ?>avro = b)A

- regular: safe + a read that overlaps a write (r3s = avr; = b)
obtains either the old or new value

. atomic: safe + reads and writes behave as if
they occur in some definite order

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

; : safe=r; 2 a
. safe: a read not concurrent with any write

obtains the previously written value
regular=r; 2 aA(r ?>avro = b)A
- regular: safe + a read that overlaps a write (r3 = avrs = b)
obtains either the old or new value

: ; : atomic=r 2 aA(rr—>avrp = b)A
. atomic: safe + reads and writes behave as if

they occur in some definite order (3 = a .rs SC b
(r > b=r3 = b)

SEQUENTIAL CONSISTENCY

. Applies to arbitrary shared objects.

- Requires that a history of operations be
equivalent to a legal sequential history, where a
legal sequential history is one that respects the
local ordering at each node.

- Called serializability when applied to
transactions

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

WAl o oe e g W e

- V

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

Mol r—b ;‘

I

[/ \
e und i e
: I -: i—,?'-.—'— /f‘;ﬂf l:/-',“*,;. e g

LINEARIZABILITY

Linearizability = sequential consistency +
respects real-time ordering.

If e1 ends before e; begins, then e; appears before

ez in the sequential history.

Linearizable data structures behave as if there's a
single, correct copy.

Atomic registers are linearizable.

IS IT LINEARIZABLE?

IS IT LINEARIZABLE?

IS IT LINEARIZABLE?

F; DA
B L1 ' 4 AP 5 ’ 4 4 N . : = - Sy SN S . ; 2 4 g 2 . - ¢ L p . - . St y L Seve el A0 A : A X £ e - Sy 4 r : .
S P DR 2 D £ P B 0 - i e A T I e e a0 - Re? O3 0 Wy B TP SO ST 9 R By W TGOS O B = DY S
. J N

IS IT LINEARIZABLE?

w(b) |

¥ e | .,‘ u\»
S = 2 PR) s g = = Qs . o= WA AT ¥ LSl . o~ ¥ Ll . o= : 0t il . o= VN AT A ¥ Ot Sl . s ¥ il MV e e a hE:
. . 5 . . e " " - i BT e 2 ~ - B 3t == (e e ORI g IR O WO o E DoEe o ol e o O B2 oo E e S or o o e e 4 prenas Baa 3 cars .: .

LINEARIZABILITY VS. SEQUENTIAL CONSISTENCY

. Sequential consistency allows operations to
appear out of real-time order. How could that
happen in reality?

LINEARIZABILITY VS. SEQUENTIAL CONSISTENCY

. Sequential consistency allows operations to
appear out of real-time order. How could that
happen in reality?

- The most common way systems are sequentially
consistency but not linearizability is that they
allow read-only operations to return stale data.

STALE READS

STALE READS

>
S —) :
S Primary Copy

STALE READS °

>
S Primary Copy

—
—
. Read-only Cache

STALE READS

>
S Primary Copy

—
—
. Read-only Cache

STALE READS

>
S Primary Copy

—
—
. Read-only Cache

CAUSAL CONSISTENCY

- Writes that are not concurrent (i.e., writes related
by the happens-before relation) must be seen in
that order. Concurrent writes can be seen in
different orders on different nodes.

CAUSAL CONSISTENCY

- Writes that are not concurrent (i.e., writes related
by the happens-before relation) must be seen in
that order. Concurrent writes can be seen in
different orders on different nodes.

- Linearizability implies causal consistency.

IS IT CAUSAL?

v
) - S s < ¥ A0 5 2 - DR, S @ ¥ N 52l 2 Y ¥ \® S 2 - ¥ A 52 2 - DR, S @ ¥ N 52 2 Y ¥ \ S DR, S @ a <
= N WIOR PR VN V3 TR W W PRI O O PR - P O - B 1 =3 Ko™ O3 7% B W PR L ORI T 3 TG W W PRI O SO PR s V3 G Wy W PRI O S P O O B 1 =3 KD O3 7% W B TR L ORI NS 3 T By W TR O B =3 Ee & 4
- -
!

IS IT CAUSAL?

w(@)

We need to know what

causes what (1.e., what
messages are sent)!

r— 3 D)

F— et

IS IT CAUSAL?

S ” = S ® ey o o -
G o i - s TN Y - e T
= = o - = T = <
vy - J = - = -
=3 2 oa < o v = L2 o o oo v e 2 oo re o
2 ~ = A\ ~ - = g =
= 2 2ia < o v = ol v o o —2 v e g e

IS IT CAUSAL?

YES!
D But not sequential.
pz*
D3

IS IT CAUSAL?

= RIS PPN = S
". = , © SO B — v et s o : ;
= S ce o o™ PR AN
>y T =, = /_.4 . — 7 5 ,‘ y _} '

IS IT CAUSAL?

Not causall
(or sequential)

Cool Theorem: Causal consistency* is the strongest form of

consistency that can be provided in an always-available convergent
system.

Basically, if you want to process writes even in the presence of network
partitions and failures, causal consistency is the best you can do.

[Mahajan et al. UTCS TR-1 [-22] *real-time causal consistency

WE CAN GET WEAKER!

. FIFO Consistency: writes done by the same
process are seen in that order; writes to different
processes can be seen in different orders.
Equivalent to the PRAM model.

. Eventual Consistency = if all writes to an object
stop, eventually all processes read the same
value. (Not even a safety property! "Eventual
consistency is no consistency.’)

IS IT FIFO?

S = S ® ey o o -
S i e - Crn e oo o . - S A G

= o i~ = T = ©
S W - Crveo e St FiF & e

DBy J = < = 2
Tl > v = L2 o o o —2- v e 2 oo re o
2 ~ A\ ~ - = g =
. > v - ol v o e =T v = B g e S eats o '

Is IT FIFO?

YES!
(but still not causal)
(or sequential)

IS IT FIFO?

- e

() AN,
= ¥ (@ = a < ¥ S e 3 £ ¥ @ = 2 - S e o ¥ A7 T a < ¥ \§ 2 SO e g a E
RS O3 T8 By B PR ORI SIS O3 T8 W W TR O O PR SIS O3 TG B W PR O ORI S PG O BT, ReT O3 T8 B B IR SO S O3 G Wy W TGO O 2 DY SN
-
!

Is IT FIFO?

Not FIFO!

.—» &= _— _ _ ___ - S \~. -
1 2
\‘ L‘
|
1
3 A oS : ‘\; ; : el e i =L, : s ; 7 a7t /7/7 Soedec S ARt ISl v TSR A S Tl AL Sl PN) .\

Swo s e 22 d /f -

Lamport's register semantics, sequential
consistency, linearizability, and causal consistency,
and FIFO consistency are all safety properties.

USING CONSISTENCY GUARANTEES

Thread 1 Thread 2
gi= b =1
print("b:" + b) print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?

USING CONSISTENCY GUARANTEES

Depends on
Thread 1 Thread 2 memory
consistency!
a. = b =1
print("b:" + b) print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?

USING CONSISTENCY GUARANTEES

Thread 1 Thread 2
gi= b =1
print("b:" + b) print("a:" + a)

Suppose both prints output O.

USING CONSISTENCY GUARANTEES

Thread 1 Thread 2

Suppose both prints output O.

Then there's a cycle in the happens-before graph.
Not sequential!

ASIDE: JAVA'S MEMORY MODEL

- Java is not sequentially consistent!

- It guarantees sequential consistency only when
the program is data-race free.

- A data-race occurs when two threads access the
same memory location concurrently, one of the
accesses is a write, and the accesses are not
protected by locks (or monitors etc.).

A COMMON (INCORRECT) IDIOM

class Foo {
private Bar bar = null;

public void baz() {
1f (bar == null)
synchronized(this) {
if (bari== null) {
bar = new Bar();
}

¥

}
bar.doAThing();

A COMMON (INCORRECT) IDIOM, CORRECTED

class Foo {
private volatile Bar bar = null;

public void baz() {

if (bar == null) { volatile = accesses are

Syg‘ghgggﬁziﬂ(ﬁﬂﬁg % sequentially consistent
bar = new Bar();
}

}

}

bar .doAThing();

}

A COMMON (INCORRECT) IDIOM, CORRECTED

class Foo {
private volatile Bar bar = null;

public void baz(
tF-(bar == nul
synchronized

Reminder: you don't need to worry

about multi-threaded access for the labs! SRR
ally consistent

if (bar ==
LIMERNE (except not grabbing locks in equals and
} } hashCode)
}
bar.doAThing();

How TO USE WEAK CONSISTENCY?

. Separate operations with stronger semantics,
weak consistency (and high performance) by
default

. Application-level protocols, either using
separate communication, or extra
synchronization variables in the data store (not
always possible)

MAIN TAKEAWAYS

. The weaker the consistency model, the harder it
is to program against (usually).

- The stronger the model, the harder it is to
enforce (again, usually).

