
SAFETY, LIVENESS, AND CONSISTENCY

Ellis Michael

HOW DO WE SPECIFY DISTRIBUTED SYSTEMS?

• Execution: Sequence of events (i.e., steps taken by the
system), potentially infinite.

• Property: A predicate on executions.

• Safety property: Specifies the "bad things" that shouldn't
happen in any execution.

• Liveness property: Specifies the "good things" that should
happen in every execution.

(See paper for formal definitions.)

THEOREM: EVERY PROPERTY IS EXPRESSIBLE AS THE
CONJUNCTION OF A SAFETY PROPERTY AND A LIVENESS
PROPERTY.

[Alpern and Schneider. 1987]

THEOREM: EVERY PROPERTY IS EXPRESSIBLE AS THE
CONJUNCTION OF A SAFETY PROPERTY AND A LIVENESS
PROPERTY.

[Alpern and Schneider. 1987]

Neat automata theory!

SOME PROPERTIES

• The system never deadlocks.

• Every client that sends a request eventually gets
a reply.

• Both generals attack simultaneously.

MORE PROPERTIES: CONSENSUS

𝑛 processes, all of which have an input value from some domain.

Processes output a value by calling decide(𝑣). Non-faulty processes
continue correctly executing protocol steps forever. We usually denote
the number of faulty processes 𝑓.

• Agreement: No two correct processes decide different values.

• Integrity: Every correct process decides at most one value, and if a
correct process decides a value 𝑣, some process had 𝑣 as its input.

• Termination: Every correct process eventually decides a value.

CONSISTENCY IS KEY!

Consistency: the allowed semantics (return values)
of a set of operations to a data store or shared object.

Consistency properties specify the interface, not
the implementation. The data might be
replicated, cached, disaggregated, etc. "Weird"
consistency semantics happen all over the stack!

Anomaly: violation of the consistency semantics

TERMINOLOGY: STRENGTH AND WEAKNESS

• Strong consistency: the system behaves as if there's just a
single copy of the data (or almost behaves that way).

The intuition is that things like caching and sharding are
implementation decisions and shouldn't be visible to clients.

• Weak consistency: allows behaviors significantly different
from the single store model.

• Eventual consistency: the aberrant behaviors are only
temporary.

WHY THE DIFFERENCE?

• Performance
- Consistency requires synchronization/coordination when

data is replicated

- Often slower to make sure you always return right answer

• Availability

- What if client is offline, or network is not working?

- Weak/eventual consistency may be only option

• Programmability
- Weaker models are harder to reason against

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

• safe: a read not concurrent with any write
obtains the previously written value

• regular: safe + a read that overlaps a write
obtains either the old or new value

• atomic: safe + reads and writes behave as if
they occur in some definite order

w(a) w(b)

r1 r2 r3

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

• safe: a read not concurrent with any write
obtains the previously written value

• regular: safe + a read that overlaps a write
obtains either the old or new value

• atomic: safe + reads and writes behave as if
they occur in some definite order

w(a) w(b)

r1 r2 r3

safe ⇒ r1 → a

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

• safe: a read not concurrent with any write
obtains the previously written value

• regular: safe + a read that overlaps a write
obtains either the old or new value

• atomic: safe + reads and writes behave as if
they occur in some definite order

w(a) w(b)

r1 r2 r3

safe ⇒ r1 → a

regular ⇒ r1 → a ∧ (r2 → a ∨ r2 → b) ∧  
 (r3 → a ∨ r3 → b)

LAMPORT'S REGISTER SEMANTICS

Registers hold a single value. Here, we consider
single-writer registers only supporting write and
read.

Semantics defined in terms of the real-time
beginnings and ends of operations to the object.

• safe: a read not concurrent with any write
obtains the previously written value

• regular: safe + a read that overlaps a write
obtains either the old or new value

• atomic: safe + reads and writes behave as if
they occur in some definite order

w(a) w(b)

r1 r2 r3

safe ⇒ r1 → a

regular ⇒ r1 → a ∧ (r2 → a ∨ r2 → b) ∧  
 (r3 → a ∨ r3 → b)

atomic ⇒ r1 → a ∧ (r2 → a ∨ r2 → b) ∧  
 (r3 → a ∨ r3 → b) ∧ 
 (r2 → b ⇒ r3 → b)

SEQUENTIAL CONSISTENCY

• Applies to arbitrary shared objects.

• Requires that a history of operations be
equivalent to a legal sequential history, where a
legal sequential history is one that respects the
local ordering at each node.

• Called serializability when applied to
transactions

IS IT SEQUENTIAL?

IS IT SEQUENTIAL?

w(a)

w(b)

r→a r→b

r→c

p1

p2

p3

p4

IS IT SEQUENTIAL?

w(a)

w(b)

r→a r→b

r→c

p1

p2

p3

p4

NO.

IS IT SEQUENTIAL?

w(a)

w(b)

r→c r→a

r→b

p1

p2

p3

p4

w(c)

IS IT SEQUENTIAL?

w(a)

w(b)

r→c r→a

r→b

p1

p2

p3

p4

NO.w(c)

IS IT SEQUENTIAL?

w(a)

w(b)

r→a r→b

r→a r→a

p1

p2

p3

p4

IS IT SEQUENTIAL?
w(a) w(b)r→a r→br→a r→a

p1

p2

p3

p4

YES!

IS IT SEQUENTIAL?

w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

IS IT SEQUENTIAL?

w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

NO.

LINEARIZABILITY

Linearizability = sequential consistency +
respects real-time ordering.

If 𝑒1 ends before 𝑒2 begins, then 𝑒1 appears before

𝑒2 in the sequential history.

Linearizable data structures behave as if there's a
single, correct copy.

Atomic registers are linearizable.

IS IT LINEARIZABLE?

w(a)

w(b)

r→a r→b

r→a r→b

p1

p2

p3

p4

IS IT LINEARIZABLE?

w(a)

w(b)

r→a r→b

r→a r→b

p1

p2

p3

p4

NO.

IS IT LINEARIZABLE?

w(b)

r→a r→b

r→a r→b

p1

p2

p3

p4

w(a)

IS IT LINEARIZABLE?

w(b)

r→a r→b

r→a r→b

p1

p2

p3

p4

YES!

w(a)

LINEARIZABILITY VS. SEQUENTIAL CONSISTENCY

• Sequential consistency allows operations to
appear out of real-time order. How could that
happen in reality?

LINEARIZABILITY VS. SEQUENTIAL CONSISTENCY

• Sequential consistency allows operations to
appear out of real-time order. How could that
happen in reality?

• The most common way systems are sequentially
consistency but not linearizability is that they
allow read-only operations to return stale data.

STALE READS

STALE READS

Primary Copy

STALE READS

Primary Copy

Read-only Cache

STALE READS

Primary Copy

Read-only Cache

write

STALE READS

Primary Copy

Read-only Cache

write

CAUSAL CONSISTENCY

• Writes that are not concurrent (i.e., writes related
by the happens-before relation) must be seen in
that order. Concurrent writes can be seen in
different orders on different nodes.

CAUSAL CONSISTENCY

• Writes that are not concurrent (i.e., writes related
by the happens-before relation) must be seen in
that order. Concurrent writes can be seen in
different orders on different nodes.

• Linearizability implies causal consistency.

IS IT CAUSAL?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

IS IT CAUSAL?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

We need to know what
causes what (i.e., what

messages are sent)!

IS IT CAUSAL?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

IS IT CAUSAL?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

YES! 
But not sequential.

IS IT CAUSAL?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

r→b

IS IT CAUSAL?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

r→b
Not causal!

(or sequential)

Cool Theorem: Causal consistency* is the strongest form of
consistency that can be provided in an always-available convergent
system.

Basically, if you want to process writes even in the presence of network
partitions and failures, causal consistency is the best you can do.

*real-time causal consistency[Mahajan et al. UTCS TR-11-22]

WE CAN GET WEAKER!

• FIFO Consistency: writes done by the same
process are seen in that order; writes to different
processes can be seen in different orders.
Equivalent to the PRAM model.

• Eventual Consistency ≈ if all writes to an object
stop, eventually all processes read the same
value. (Not even a safety property! "Eventual
consistency is no consistency.")

IS IT FIFO?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

r→b

IS IT FIFO?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

r→b
YES!

(but still not causal)
(or sequential)

IS IT FIFO?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

w(c)

r→c

IS IT FIFO?
w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

Not FIFO!

w(c)

r→c

Lamport's register semantics, sequential
consistency, linearizability, and causal consistency,
and FIFO consistency are all safety properties.

USING CONSISTENCY GUARANTEES

Thread 1 
 
a = 1
print("b:" + b)

Thread 2 
 
b = 1
print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?

USING CONSISTENCY GUARANTEES

Thread 1 
 
a = 1
print("b:" + b)

Thread 2 
 
b = 1
print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?

Depends on
memory

consistency!

USING CONSISTENCY GUARANTEES

Thread 1 
 
a = 1
print("b:" + b)

Thread 2 
 
b = 1
print("a:" + a)

Suppose both prints output 0.

USING CONSISTENCY GUARANTEES

Thread 1 
 
a = 1
print("b:" + b)

Thread 2 
 
b = 1
print("a:" + a)

Suppose both prints output 0.

Then there's a cycle in the happens-before graph. 
Not sequential!

ASIDE: JAVA'S MEMORY MODEL

• Java is not sequentially consistent!

• It guarantees sequential consistency only when
the program is data-race free.

• A data-race occurs when two threads access the
same memory location concurrently, one of the
accesses is a write, and the accesses are not
protected by locks (or monitors etc.).

A COMMON (INCORRECT) IDIOM

class Foo {
 private Bar bar = null;

 public void baz() {
 if (bar == null) {
 synchronized(this) {
 if (bar == null) {
 bar = new Bar();
 }
 }
 }
 bar.doAThing();
 }
}

A COMMON (INCORRECT) IDIOM, CORRECTED

class Foo {
 private volatile Bar bar = null;

 public void baz() {
 if (bar == null) {
 synchronized(this) {
 if (bar == null) {
 bar = new Bar();
 }
 }
 }
 bar.doAThing();
 }
}

volatile = accesses are
sequentially consistent

A COMMON (INCORRECT) IDIOM, CORRECTED

class Foo {
 private volatile Bar bar = null;

 public void baz() {
 if (bar == null) {
 synchronized(this) {
 if (bar == null) {
 bar = new Bar();
 }
 }
 }
 bar.doAThing();
 }
}

volatile = accesses are
sequentially consistent

Reminder: you don't need to worry
about multi-threaded access for the labs!

(except not grabbing locks in equals and
hashCode)

HOW TO USE WEAK CONSISTENCY?

• Separate operations with stronger semantics,
weak consistency (and high performance) by
default

• Application-level protocols, either using
separate communication, or extra
synchronization variables in the data store (not
always possible)

MAIN TAKEAWAYS

• The weaker the consistency model, the harder it
is to program against (usually).

• The stronger the model, the harder it is to
enforce (again, usually).

