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ADMINISTRIVIA

• Lab 4 home stretch! 

• Problem Set 3 due Wednesday. 

• Fill out course evaluation!



THIS WEEK

• New research! 

• Work being done at UW by Arvind and me! 

- Diskless stable storage (Today) 

- Datacenter networking and Speculative Paxos 
(Wednesday) 

- Programmable networks and NOPaxos and Eris 
(Friday)
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For a long time, we've assumed that no more than 

𝑓 servers fail (usually 𝑓<𝑛/2 or 𝑓<n/3 for Byzantine 
failures).

We can't assume that some servers never fail. We 
need a way to recover from failures.



WHAT IF WE HAVE STABLE STORAGE?
Simple method: 

• Each node has an attached disk. 

• Node synchronously writes message (or timer) 
to disk before handling it. 

• After node fails, upon restart replay log to 
restore server to previous state since handlers 
are deterministic. 

• Can periodically write full state to disk to clear 
event log and free space. 

• This method works for any distributed 
protocol.

𝑚1 𝑚2 𝑡1 𝑚3 𝑡2 𝑚4 ...



PROBLEM #1: SYNCHRONOUS WRITES 
TO DISK ARE SLOW (REALLY SLOW) 
(YES, EVEN IF YOU USE AN SSD)
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Take PMMC as an example.

We can skip logging the P1B and P2B messages. Recovering 
leaders read from a quorum to discover any previously used 
ballot number, use a higher one in the future. Everything 
else on the leader is soft state that can be safely discarded.

We can even skip logging everything except P1A messages. 
Then, recovering acceptors must either recover all proposals 
from the latest leader or wait for a new leader to take over.
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Acceptor 
State

• Write P1A messages 
synchronously to disk.

• Need to learn about 
accepted values.

• Solution: learn about 
missing P2As from the 
recent leader (or a 
future one which reads 
from a quorum not 
including this node).

Allows acceptors to "forget" 
certain P2As but still safe. 

(Why?)













If all messages are logged, each 
server can recover independently. 
Failures don't cause permanent 

deadlock.







Certain storage and recovery 
schemes yield weaker liveness 

conditions.
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• Disk failures are by far the most common 
hardware failures. Relying on disks for recovery 
can be self-defeating.

• Reconfiguration protocols exist but are costly. 
They typically rely on consensus and cause the 
normal protocol to temporarily halt.

• However, getting diskless recovery right is tricky.



VIEWSTAMPED REPLICATION (REVISITED)

VR is a state-machine replication protocol akin to 
Paxos. 

A later version contained a diskless recovery 
protocol that was supposed to allow nodes to 
recover even when they didn't write any proposals 
or leader change messages to disk.



VR DISKLESS RECOVERY

Upon recovery, a node: 

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥 
is a unique value to guarantee freshness. 

2. Nodes that are currently OPERATIONAL (not 
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its 

ballot number and 𝑙 is its log. 

3. The recovering node waits for responses from a 
majority, including one from the leader node 
associated with the largest ballot seen. It 
updates its own log and returns its status to 
OPERATIONAL.
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GOAL: EMULATE STABLE STORAGE

• Our goal is to provide each node with a set that it can add values 
to and read from. This set need only support a single writer/reader. 

• We want to guarantee that values written are later returned and 
that completed reads are monotonic (i.e., that a value in the set 
returned by one read is returned by later reads).  

• We want these guarantees to hold even across node failures. 

• Nodes can use this set just like stable storage. Therefore, any 
protocol that is safe with stable storage will still be safe when 
stable storage is replaced by our diskless storage.



AMNESIA FAULT TOLERANCE

• Nodes can crash and restart. 

• Upon restart, they lose all of their local 
state. 

• Restarting nodes run a recovery protocol 
to re-learn any necessary information. 

• How can we ever make progress when 
nodes can forget what we've told them 
at any moment?
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• Like VR, we could assume that nodes can generate 
unique values (e.g., by generating a large random 
number).

• For simplicity, we'll assume that nodes have access 
to a non-decreasing clock (upon recovery, they 
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• Nodes record this clock value upon beginning 
recovery. This is called the node's incarnation ID.
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CRASH VECTORS

• Each node maintains a crash vector, 
with one entry per node containing 
the largest incarnation ID known for 
that node.

• Crash vectors are attached to set 
operation messages and recovery 
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• Crash vectors are attached to set 
operation messages and recovery 
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• Upon receiving messages, nodes 
update each entry in their local crash 
vector, taking the maximum of that 
entry and the one in the message.
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STATUS

At any given time, each node has one of three statuses: 
OPERATIONAL, DOWN, or RECOVERING. 

• A node that is DOWN has crashed and has not yet begun 
recovery. 

• A node that is RECOVERING has restarted but hasn't yet 
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• A node that is OPERATIONAL has either never crashed or 
has finished recovering from its most recent crash.
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• Nodes update their crash vectors 
when receiving a message. 

• Nodes can match requests with 
replies.
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IS IT CORRECT?



QUORUM KNOWLEDGE

• We say that quorum 𝑄 knows 𝑋 if, for all nodes 𝑝 ∈ 𝑄: 

1. 𝑝 is DOWN, 

2. 𝑝 is OPERATIONAL and knows 𝑋, or 

3. 𝑝 is RECOVERING and guaranteed to know 𝑋 upon finishing 
recovery (if it doesn't crash again first). 

• We are concerned with two kinds of quorum knowledge: 
knowledge of written values and knowledge of incarnation 
IDs.
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• That quorum will contain at least one node 
from 𝑄, which by induction knows 𝑋.
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ACQUISITION OF QUORUM KNOWLEDGE (I)

• We want to show that a crash-consistent set of 
replies implies quorum knowledge. 

• For writes, we want to know that the value 
being written was persisted. 

• On recovery, we want to know that our new 
(larger) incarnation ID was persisted.



ACQUISITION OF QUORUM KNOWLEDGE (II)

We will prove this by induction. 

Invariant 1: If a node receives a crash-consistent set of 
replies for 𝑋 from quorum 𝑄, then 𝑄 knows 𝑋. 

Invariant 2: If node 𝑝 ever sent a reply that makes it into 

a crash-consistent set of replies for 𝑋 from a quorum, 

and 𝑝 is currently OPERATIONAL, then 𝑝 knows 𝑋.



ACQUISITION OF QUORUM KNOWLEDGE (III)
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sent a reply that makes it 
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set of replies for 𝑋 from a 

quorum, and 𝑝 is 
currently OPERATIONAL, 

then 𝑝 knows 𝑋.

Suppose 𝑝 received a crash-consistent set of replies from 𝑄.
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they hadn't yet helped any other node in 𝑄 recover to a 
later incarnation (than the one that sent the reply).
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Then, for all nodes in 𝑄, at the time they sent their replies, 
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later incarnation (than the one that sent the reply).

Otherwise, by induction, it would have known about that 
later incarnation and the replies wouldn't be crash-
consistent.
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one of the nodes that helped it recover must have been in 𝑄 (by 
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known 𝑋 during the recovery, implying that 𝑝 now knows 𝑋.
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Crash-consistent replies for 𝑋Crash-consistent replies for
𝑝's recovery

𝑟
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ACQUISITION OF QUORUM KNOWLEDGE (V)
Invariant 1: If a node 
receives a crash-
consistent set of replies 

for 𝑋 from quorum 𝑄, 

then 𝑄 knows 𝑋. 

Invariant 2: If node 𝑝 ever 
sent a reply that made it 
into a crash-consistent 

set of replies for 𝑋 from a 

quorum, and 𝑝 is 
currently OPERATIONAL, 

then 𝑝 knows 𝑋.

Next, suppose that 𝑝 sent a reply that will make it into a crash-consistent set of 

replies and is currently operational but doesn't know 𝑋. 

Again, it must have crashed and recovered, and there must be some node in the 

intersection of those that it recovered from and the other nodes that sent replies, 𝑟. 

When could 𝑟 send its reply for 𝑋?

𝑟 sends the  
RECOVERY-REPLY to 𝑝

𝑝 finishes recovery

𝑝 would know 𝑋 
(Invariant 2)

Not crash-consistent 
(Invariant 2)

Not crash-consistent 
(Invariant 1 + 
Persistence of 

Quorum Knowledge)



COMPLETED WRITES ENSURE QUORUM 
KNOWLEDGE, WHICH IS PERSISTENT!



WHAT DID WE ACCOMPLISH?
• We created a set which a writer can store values in. Upon recovery, the 

writer will re-learn the values of all completed writes. 

• We can run 𝑛 copies of this protocol in parallel, one for each server. 

• Any protocol which is safe when you assume stable storage will be safe 
when disk-based storage is replaced with our diskless storage. 

• Furthermore, you could recover from disk normally and only recover from 
diskless storage when disks fail. 

• If latency between nodes is small, writing to diskless storage is faster. 

• But what about liveness?



WHEN DISKLESS STORAGE IS LIVE

• Obviously, if all servers crash simultaneously and you don't have stable 
storage, you're stuck. If you have stable storage, you could still 
recover (depending on what you were storing). 

• So, we can't hope for the same liveness guarantees. Moreover, 
specifying exactly when this protocol can make progress is hard. 

• If, for all points in time, there is always some quorum that is 
operational, we can make progress. 

• If there exists some particular quorum that stays OPERATIONAL long 
enough, then our diskless stable storage algorithm is wait-free! We 
don't need consensus!



QUESTIONS?


