
DISKLESS STABLE STORAGE

Ellis Michael

ADMINISTRIVIA

• Lab 4 home stretch!

• Problem Set 3 due Wednesday.

• Fill out course evaluation!

THIS WEEK

• New research!

• Work being done at UW by Arvind and me!

- Diskless stable storage (Today)

- Datacenter networking and Speculative Paxos
(Wednesday)

- Programmable networks and NOPaxos and Eris
(Friday)

WE'VE BEEN LIVING IN A FANTASY WORLD

For a long time, we've assumed that no more than

𝑓 servers fail (usually 𝑓<𝑛/2 or 𝑓<n/3 for Byzantine
failures).

WE'VE BEEN LIVING IN A FANTASY WORLD

For a long time, we've assumed that no more than

𝑓 servers fail (usually 𝑓<𝑛/2 or 𝑓<n/3 for Byzantine
failures).

We can't assume that some servers never fail. We
need a way to recover from failures.

WE'VE BEEN LIVING IN A FANTASY WORLD

For a long time, we've assumed that no more than

𝑓 servers fail (usually 𝑓<𝑛/2 or 𝑓<n/3 for Byzantine
failures).

We can't assume that some servers never fail. We
need a way to recover from failures.

WHAT IF WE HAVE STABLE STORAGE?
Simple method:

• Each node has an attached disk.

• Node synchronously writes message (or timer)
to disk before handling it.

• After node fails, upon restart replay log to
restore server to previous state since handlers
are deterministic.

• Can periodically write full state to disk to clear
event log and free space.

• This method works for any distributed
protocol.

𝑚1 𝑚2 𝑡1 𝑚3 𝑡2 𝑚4 ...

PROBLEM #1: SYNCHRONOUS WRITES
TO DISK ARE SLOW (REALLY SLOW)
(YES, EVEN IF YOU USE AN SSD)

NOT EVERYTHING NEEDS TO BE SAVED

Take PMMC as an example.

NOT EVERYTHING NEEDS TO BE SAVED

Take PMMC as an example.

We can skip logging the P1B and P2B messages. Recovering
leaders read from a quorum to discover any previously used
ballot number, use a higher one in the future. Everything
else on the leader is soft state that can be safely discarded.

NOT EVERYTHING NEEDS TO BE SAVED

Take PMMC as an example.

We can skip logging the P1B and P2B messages. Recovering
leaders read from a quorum to discover any previously used
ballot number, use a higher one in the future. Everything
else on the leader is soft state that can be safely discarded.

We can even skip logging everything except P1A messages.
Then, recovering acceptors must either recover all proposals
from the latest leader or wait for a new leader to take over.

Replica
State

• Should save state to disk
before garbage
collection.

• Everything else can be
rebuilt by re-learning
accepted values.

Replica
State

• Should save state to disk
before garbage
collection.

• Everything else can be
rebuilt by re-learning
accepted values.

Leader
State

• Only invariant a leader
needs stable storage to
enforce is avoiding using
the same ballot with
different values.

• Solution: learn about any
ballot used in a P2A by
querying P1As stored at
acceptors, use a ballot
larger than max seen.

Replica
State

• Should save state to disk
before garbage
collection.

• Everything else can be
rebuilt by re-learning
accepted values.

Leader
State

• Only invariant a leader
needs stable storage to
enforce is avoiding using
the same ballot with
different values.

• Solution: learn about any
ballot used in a P2A by
querying P1As stored at
acceptors, use a ballot
larger than max seen.

Acceptor
State

• Write P1A messages
synchronously to disk.

• Need to learn about
accepted values.

• Solution: learn about
missing P2As from the
recent leader (or a
future one which reads
from a quorum not
including this node).

Replica
State

• Should save state to disk
before garbage
collection.

• Everything else can be
rebuilt by re-learning
accepted values.

Leader
State

• Only invariant a leader
needs stable storage to
enforce is avoiding using
the same ballot with
different values.

• Solution: learn about any
ballot used in a P2A by
querying P1As stored at
acceptors, use a ballot
larger than max seen.

Acceptor
State

• Write P1A messages
synchronously to disk.

• Need to learn about
accepted values.

• Solution: learn about
missing P2As from the
recent leader (or a
future one which reads
from a quorum not
including this node).

Allows acceptors to "forget"
certain P2As but still safe.

(Why?)

If all messages are logged, each
server can recover independently.
Failures don't cause permanent

deadlock.

Certain storage and recovery
schemes yield weaker liveness

conditions.

PROBLEM #2: DISKS CAN FAIL!

NEED FOR A DISKLESS RECOVERY MECHANISM

NEED FOR A DISKLESS RECOVERY MECHANISM

• Disk failures are by far the most common
hardware failures. Relying on disks for recovery
can be self-defeating.

NEED FOR A DISKLESS RECOVERY MECHANISM

• Disk failures are by far the most common
hardware failures. Relying on disks for recovery
can be self-defeating.

• Reconfiguration protocols exist but are costly.
They typically rely on consensus and cause the
normal protocol to temporarily halt.

NEED FOR A DISKLESS RECOVERY MECHANISM

• Disk failures are by far the most common
hardware failures. Relying on disks for recovery
can be self-defeating.

• Reconfiguration protocols exist but are costly.
They typically rely on consensus and cause the
normal protocol to temporarily halt.

• However, getting diskless recovery right is tricky.

VIEWSTAMPED REPLICATION (REVISITED)

VR is a state-machine replication protocol akin to
Paxos.

A later version contained a diskless recovery
protocol that was supposed to allow nodes to
recover even when they didn't write any proposals
or leader change messages to disk.

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

𝑝4 becoming leader

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

𝑝4 becoming leader

prepare (P1A)

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

VR DISKLESS RECOVERY

Upon recovery, a node:

1. Sends ⟨RECOVERY, 𝑥⟩ to all other nodes, where 𝑥
is a unique value to guarantee freshness.

2. Nodes that are currently OPERATIONAL (not
recovering) respond with  
⟨RECOVERY-RESPONSE, 𝑥, 𝑏, 𝑙⟩, where 𝑏 is its

ballot number and 𝑙 is its log.

3. The recovering node waits for responses from a
majority, including one from the leader node
associated with the largest ballot seen. It
updates its own log and returns its status to
OPERATIONAL.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
responseCan decide a

different value!

PROBLEM: UNSTABLE QUORUMS

An unstable quorum is one in
which some of the participants
have already crashed and
restarted and no longer
remember the relevant
information.

Unstable quorums can forget
key information, causing the
system to violate safety.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

PROBLEM: UNSTABLE QUORUMS

An unstable quorum is one in
which some of the participants
have already crashed and
restarted and no longer
remember the relevant
information.

Unstable quorums can forget
key information, causing the
system to violate safety.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

PROBLEM: UNSTABLE QUORUMS

An unstable quorum is one in
which some of the participants
have already crashed and
restarted and no longer
remember the relevant
information.

Unstable quorums can forget
key information, causing the
system to violate safety.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝1 initially leader

proposal (P2A)

proposal
response (P2B)

𝑝4 becoming leader

prepare (P1A)

prepare
response (P1B)

failure

recovery

recovery
response

GOAL: EMULATE STABLE STORAGE

• Our goal is to provide each node with a set that it can add values
to and read from. This set need only support a single writer/reader.

• We want to guarantee that values written are later returned and
that completed reads are monotonic (i.e., that a value in the set
returned by one read is returned by later reads).

• We want these guarantees to hold even across node failures.

• Nodes can use this set just like stable storage. Therefore, any
protocol that is safe with stable storage will still be safe when
stable storage is replaced by our diskless storage.

AMNESIA FAULT TOLERANCE

• Nodes can crash and restart.

• Upon restart, they lose all of their local
state.

• Restarting nodes run a recovery protocol
to re-learn any necessary information.

• How can we ever make progress when
nodes can forget what we've told them
at any moment?

𝑝

AMNESIA FAULT TOLERANCE

• Nodes can crash and restart.

• Upon restart, they lose all of their local
state.

• Restarting nodes run a recovery protocol
to re-learn any necessary information.

• How can we ever make progress when
nodes can forget what we've told them
at any moment?

𝑝

AMNESIA FAULT TOLERANCE

• Nodes can crash and restart.

• Upon restart, they lose all of their local
state.

• Restarting nodes run a recovery protocol
to re-learn any necessary information.

• How can we ever make progress when
nodes can forget what we've told them
at any moment?

𝑝

AMNESIA FAULT TOLERANCE

• Nodes can crash and restart.

• Upon restart, they lose all of their local
state.

• Restarting nodes run a recovery protocol
to re-learn any necessary information.

• How can we ever make progress when
nodes can forget what we've told them
at any moment?

𝑝

AMNESIA FAULT TOLERANCE

• Nodes can crash and restart.

• Upon restart, they lose all of their local
state.

• Restarting nodes run a recovery protocol
to re-learn any necessary information.

• How can we ever make progress when
nodes can forget what we've told them
at any moment?

𝑝

WHAT DO AMNESIACS KNOW?
• If we don't assume that the initial states of nodes

are different across recoveries, we can't do
anything.

𝑝

WHAT DO AMNESIACS KNOW?
• If we don't assume that the initial states of nodes

are different across recoveries, we can't do
anything.

𝑝

WHAT DO AMNESIACS KNOW?
• If we don't assume that the initial states of nodes

are different across recoveries, we can't do
anything.

𝑝

WHAT DO AMNESIACS KNOW?
• If we don't assume that the initial states of nodes

are different across recoveries, we can't do
anything.

• Like VR, we could assume that nodes can generate
unique values (e.g., by generating a large random
number).

𝑝

WHAT DO AMNESIACS KNOW?
• If we don't assume that the initial states of nodes

are different across recoveries, we can't do
anything.

• Like VR, we could assume that nodes can generate
unique values (e.g., by generating a large random
number).

• For simplicity, we'll assume that nodes have access
to a non-decreasing clock (upon recovery, they
wait for at least one tick).

𝑝

WHAT DO AMNESIACS KNOW?
• If we don't assume that the initial states of nodes

are different across recoveries, we can't do
anything.

• Like VR, we could assume that nodes can generate
unique values (e.g., by generating a large random
number).

• For simplicity, we'll assume that nodes have access
to a non-decreasing clock (upon recovery, they
wait for at least one tick).

• Nodes record this clock value upon beginning
recovery. This is called the node's incarnation ID.

𝑝

CRASH VECTORS

• Each node maintains a crash vector,
with one entry per node containing
the largest incarnation ID known for
that node.

• Crash vectors are attached to set
operation messages and recovery
messages.

• Upon receiving messages, nodes
update each entry in their local crash
vector, taking the maximum of that
entry and the one in the message.

2 3 1 0 1

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

𝑣:

CRASH VECTORS

• Each node maintains a crash vector,
with one entry per node containing
the largest incarnation ID known for
that node.

• Crash vectors are attached to set
operation messages and recovery
messages.

• Upon receiving messages, nodes
update each entry in their local crash
vector, taking the maximum of that
entry and the one in the message.

2 3 1 0 1

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

Indicates that the latest
incarnation of 𝑝2 this node

knows about has incarnation
ID 3.

𝑣:

CRASH VECTORS

• Each node maintains a crash vector,
with one entry per node containing
the largest incarnation ID known for
that node.

• Crash vectors are attached to set
operation messages and recovery
messages.

• Upon receiving messages, nodes
update each entry in their local crash
vector, taking the maximum of that
entry and the one in the message.

• This works just like a vector clock!

2 3 1 0 1

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

Indicates that the latest
incarnation of 𝑝2 this node

knows about has incarnation
ID 3.

𝑣:

CRASH CONSISTENCY

• Two messages with crash vectors 𝑣1 and 𝑣2, sent by 𝑝1 and 𝑝2,
respectively, are crash-consistent if:

𝑣1[𝑝2] ≤ 𝑣2[𝑝2] and 𝑣2[𝑝1] ≤ 𝑣1[𝑝1]

That is, if 𝑝1 doesn't know about a later incarnation of 𝑝2 and vice-
versa.

• Similarly, a set of messages is crash-consistent if they are pairwise
crash-consistent.

• Again, this works exactly like a vector clock.

STATUS

At any given time, each node has one of three statuses:
OPERATIONAL, DOWN, or RECOVERING.

• A node that is DOWN has crashed and has not yet begun
recovery.

• A node that is RECOVERING has restarted but hasn't yet
finished the recovery procedure.

• A node that is OPERATIONAL has either never crashed or
has finished recovering from its most recent crash.

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣⟩ to all nodes.

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending when

necessary. Then sets its local 𝑆 to be the union of the replies and uses the write
procedure to write-back the read values (for monotonicity).

PROTOCOL IN A SLIDE
Persistent local state:
 𝑛 (number of nodes)

 𝑖 (node ID)

Volatile local state:
 𝑣 (local crash vector)

 𝜎 (current status)

 𝑆 (local set)

• Nodes update their crash vectors
when receiving a message.

• Nodes can match requests with
replies.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with 
⟨WRITE-REPLY, 𝑣, 𝑠⟩

• Writer waits for a crash-consistent set of replies from a majority, re-sending when
necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending when

necessary. Then sets its local 𝑆 to be the union of the replies and uses the write
procedure to write-back the read values (for monotonicity).

• Finally, sets 𝜎 to OPERATIONAL, declaring the end of recovery.

IS IT CORRECT?

QUORUM KNOWLEDGE

• We say that quorum 𝑄 knows 𝑋 if, for all nodes 𝑝 ∈ 𝑄:

1. 𝑝 is DOWN,

2. 𝑝 is OPERATIONAL and knows 𝑋, or

3. 𝑝 is RECOVERING and guaranteed to know 𝑋 upon finishing
recovery (if it doesn't crash again first).

• We are concerned with two kinds of quorum knowledge:
knowledge of written values and knowledge of incarnation
IDs.

PERSISTENCE OF QUORUM KNOWLEDGE

Suppose quorum 𝑄 knows 𝑋 (either an
incarnation ID or written value). We will show
this knowledge persists by induction.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with

⟨WRITE-REPLY, 𝑣, 𝑠⟩
• Writer waits for a crash-consistent set of replies from a majority, re-

sending when necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣, 𝑠⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending

when necessary. Then sets its local 𝑆 to be the union of the replies
and uses the write procedure to write-back the read values (for
monotonicity).

• Finally, sets 𝜎 to OPERATIONAL, declaring the end of recovery.

PERSISTENCE OF QUORUM KNOWLEDGE

Suppose quorum 𝑄 knows 𝑋 (either an
incarnation ID or written value). We will show
this knowledge persists by induction.

• The only step a node can take to falsify our
invariant is beginning recovery.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with

⟨WRITE-REPLY, 𝑣, 𝑠⟩
• Writer waits for a crash-consistent set of replies from a majority, re-

sending when necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣, 𝑠⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending

when necessary. Then sets its local 𝑆 to be the union of the replies
and uses the write procedure to write-back the read values (for
monotonicity).

• Finally, sets 𝜎 to OPERATIONAL, declaring the end of recovery.

PERSISTENCE OF QUORUM KNOWLEDGE

Suppose quorum 𝑄 knows 𝑋 (either an
incarnation ID or written value). We will show
this knowledge persists by induction.

• The only step a node can take to falsify our
invariant is beginning recovery.

• If that node manages to eventually recover, it
must use a quorum of OPERATIONAL nodes.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with

⟨WRITE-REPLY, 𝑣, 𝑠⟩
• Writer waits for a crash-consistent set of replies from a majority, re-

sending when necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣, 𝑠⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending

when necessary. Then sets its local 𝑆 to be the union of the replies
and uses the write procedure to write-back the read values (for
monotonicity).

• Finally, sets 𝜎 to OPERATIONAL, declaring the end of recovery.

PERSISTENCE OF QUORUM KNOWLEDGE

Suppose quorum 𝑄 knows 𝑋 (either an
incarnation ID or written value). We will show
this knowledge persists by induction.

• The only step a node can take to falsify our
invariant is beginning recovery.

• If that node manages to eventually recover, it
must use a quorum of OPERATIONAL nodes.

• That quorum will contain at least one node
from 𝑄, which by induction knows 𝑋.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with

⟨WRITE-REPLY, 𝑣, 𝑠⟩
• Writer waits for a crash-consistent set of replies from a majority, re-

sending when necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣, 𝑠⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending

when necessary. Then sets its local 𝑆 to be the union of the replies
and uses the write procedure to write-back the read values (for
monotonicity).

• Finally, sets 𝜎 to OPERATIONAL, declaring the end of recovery.

PERSISTENCE OF QUORUM KNOWLEDGE

Suppose quorum 𝑄 knows 𝑋 (either an
incarnation ID or written value). We will show
this knowledge persists by induction.

• The only step a node can take to falsify our
invariant is beginning recovery.

• If that node manages to eventually recover, it
must use a quorum of OPERATIONAL nodes.

• That quorum will contain at least one node
from 𝑄, which by induction knows 𝑋.

• Therefore, our node will learn 𝑋 if/when it
finishes recovery.

write(𝑠)

• Sends ⟨WRITE, 𝑣, 𝑠⟩ to all nodes

• Currently operational nodes add 𝑠 to their local set, respond with

⟨WRITE-REPLY, 𝑣, 𝑠⟩
• Writer waits for a crash-consistent set of replies from a majority, re-

sending when necessary.

read()
• Simply returns its local set

Upon Recovery (all nodes)
• Sets its entry in its local crash vector to be its new incarnation ID
• Sends ⟨RECOVER, 𝑣, 𝑠⟩ to all nodes.

• Operational nodes reply with ⟨RECOVER-REPLY, 𝑣, 𝑆⟩.
• Waits for a crash-consistent set of replies from a majority, re-sending

when necessary. Then sets its local 𝑆 to be the union of the replies
and uses the write procedure to write-back the read values (for
monotonicity).

• Finally, sets 𝜎 to OPERATIONAL, declaring the end of recovery.

ACQUISITION OF QUORUM KNOWLEDGE (I)

• We want to show that a crash-consistent set of
replies implies quorum knowledge.

• For writes, we want to know that the value
being written was persisted.

• On recovery, we want to know that our new
(larger) incarnation ID was persisted.

ACQUISITION OF QUORUM KNOWLEDGE (II)

We will prove this by induction.

Invariant 1: If a node receives a crash-consistent set of
replies for 𝑋 from quorum 𝑄, then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever sent a reply that makes it into

a crash-consistent set of replies for 𝑋 from a quorum,

and 𝑝 is currently OPERATIONAL, then 𝑝 knows 𝑋.

ACQUISITION OF QUORUM KNOWLEDGE (III)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Suppose 𝑝 received a crash-consistent set of replies from 𝑄.

ACQUISITION OF QUORUM KNOWLEDGE (III)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Suppose 𝑝 received a crash-consistent set of replies from 𝑄.

Then, for all nodes in 𝑄, at the time they sent their replies,

they hadn't yet helped any other node in 𝑄 recover to a
later incarnation (than the one that sent the reply).

ACQUISITION OF QUORUM KNOWLEDGE (III)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Suppose 𝑝 received a crash-consistent set of replies from 𝑄.

Then, for all nodes in 𝑄, at the time they sent their replies,

they hadn't yet helped any other node in 𝑄 recover to a
later incarnation (than the one that sent the reply).

Otherwise, by induction, it would have known about that
later incarnation and the replies wouldn't be crash-
consistent.

ACQUISITION OF QUORUM KNOWLEDGE (IV)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Now, suppose for the sake of contradiction, that a node in 𝑝 ∈ 𝑄 is

OPERATIONAL but does not know 𝑋.

ACQUISITION OF QUORUM KNOWLEDGE (IV)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Now, suppose for the sake of contradiction, that a node in 𝑝 ∈ 𝑄 is

OPERATIONAL but does not know 𝑋.

It must have crashed and recovered since sending its reply. At least
one of the nodes that helped it recover must have been in 𝑄 (by

quorum intersection). Call that node 𝑟.

ACQUISITION OF QUORUM KNOWLEDGE (IV)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Now, suppose for the sake of contradiction, that a node in 𝑝 ∈ 𝑄 is

OPERATIONAL but does not know 𝑋.

It must have crashed and recovered since sending its reply. At least
one of the nodes that helped it recover must have been in 𝑄 (by

quorum intersection). Call that node 𝑟.

As we just showed, 𝑟 couldn't have participated in the recovery
before sending its own reply. But then by induction, it would have
known 𝑋 during the recovery, implying that 𝑝 now knows 𝑋.

ACQUISITION OF QUORUM KNOWLEDGE (IV)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that makes it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Now, suppose for the sake of contradiction, that a node in 𝑝 ∈ 𝑄 is

OPERATIONAL but does not know 𝑋.

It must have crashed and recovered since sending its reply. At least
one of the nodes that helped it recover must have been in 𝑄 (by

quorum intersection). Call that node 𝑟.

As we just showed, 𝑟 couldn't have participated in the recovery
before sending its own reply. But then by induction, it would have
known 𝑋 during the recovery, implying that 𝑝 now knows 𝑋.

Contradiction. Invariant 1 holds.

𝑝

Crash-consistent replies for 𝑋Crash-consistent replies for
𝑝's recovery

𝑟

>𝑛/2>𝑛/2

ACQUISITION OF QUORUM KNOWLEDGE (V)
Invariant 1: If a node
receives a crash-
consistent set of replies

for 𝑋 from quorum 𝑄,

then 𝑄 knows 𝑋.

Invariant 2: If node 𝑝 ever
sent a reply that made it
into a crash-consistent

set of replies for 𝑋 from a

quorum, and 𝑝 is
currently OPERATIONAL,

then 𝑝 knows 𝑋.

Next, suppose that 𝑝 sent a reply that will make it into a crash-consistent set of

replies and is currently operational but doesn't know 𝑋.

Again, it must have crashed and recovered, and there must be some node in the

intersection of those that it recovered from and the other nodes that sent replies, 𝑟.

When could 𝑟 send its reply for 𝑋?

𝑟 sends the  
RECOVERY-REPLY to 𝑝

𝑝 finishes recovery

𝑝 would know 𝑋
(Invariant 2)

Not crash-consistent
(Invariant 2)

Not crash-consistent
(Invariant 1 +
Persistence of

Quorum Knowledge)

COMPLETED WRITES ENSURE QUORUM
KNOWLEDGE, WHICH IS PERSISTENT!

WHAT DID WE ACCOMPLISH?
• We created a set which a writer can store values in. Upon recovery, the

writer will re-learn the values of all completed writes.

• We can run 𝑛 copies of this protocol in parallel, one for each server.

• Any protocol which is safe when you assume stable storage will be safe
when disk-based storage is replaced with our diskless storage.

• Furthermore, you could recover from disk normally and only recover from
diskless storage when disks fail.

• If latency between nodes is small, writing to diskless storage is faster.

• But what about liveness?

WHEN DISKLESS STORAGE IS LIVE

• Obviously, if all servers crash simultaneously and you don't have stable
storage, you're stuck. If you have stable storage, you could still
recover (depending on what you were storing).

• So, we can't hope for the same liveness guarantees. Moreover,
specifying exactly when this protocol can make progress is hard.

• If, for all points in time, there is always some quorum that is
operational, we can make progress.

• If there exists some particular quorum that stays OPERATIONAL long
enough, then our diskless stable storage algorithm is wait-free! We
don't need consensus!

QUESTIONS?

