
Dynamo



Dynamo motivation

Fast, available writes 

- Shopping cart: always enable purchases 

FLP: consistency and progress at odds 

- Paxos: must communicate with a quorum 

Performance: strict consistency = “single” copy 

- Updates serialized to single copy 

- Or, single copy moves 



Why Fast Available Writes?

Amazon study: 100ms increase in response time  

=> 5% reduction in revenue 

Similar results at other ecommerce sites 

99.99% availability  

=> less than an hour outage/year (total) 

Amazon revenue > $300K/minute 



Dynamo motivation

Dynamo goals 

- Expose “as much consistency as possible” 

- Good latency, 99.9% of the time 

- Easy scalability



Dynamo consistency

Eventual consistency 

- Can have stale reads 

- Can have multiple “latest” versions 

- Reads can return multiple values 

Not sequentially consistent 

- Can’t “defriend and dis”



External interface
get : key -> ([value], context) 

- Exposes inconsistency: can return multiple values 

- context is opaque to user (set of vector clocks) 

put : (key, value, context) -> void 

- Caller passes context from previous get 

Example: add to cart 

 (carts, context) = get(“cart-“ + uid)  
 cart = merge(carts)  
 cart = add(cart, item)  
 put(“cart-“ + uid, cart, context)



Resolving conflicts in application

Applications can choose how to handle inconsistency: 

- Shopping cart: take union of cart versions 

- User sessions: take most recent session 

- High score list: take maximum score 

Default: highest timestamp wins 

Context used to record causal relationships between 
gets and puts 

- Once inconsistency resolved, should stay resolved 

- Implemented using vector clocks



Dynamo’s vector clocks

Each object associated with a vector clock 

- e.g., [(node1, 0), (node2, 1)] 

Each write has a coordinator, and is replicated to 
multiple other nodes 

- In an eventually consistent manner 

Nodes in vector clock are coordinators 



Dynamo’s vector clocks

Client sends clock with put (as context) 

Coordinator increments its own index in clock, then 
replicates across nodes 

Nodes keep objects with conflicting vector clocks 

- These are then returned on subsequent gets 

If clock(v1) < clock(v2), node deletes v1 



Dynamo Vector Clocks

Vector clock returned as context with get 

- Merge of all returned objects’ clocks 

Used to detect inconsistencies on write
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Where does each key live?

Goals: 

- Balance load, even as servers join and leave 

- Encourage put/get to see each other 

- Avoid conflicting versions 

Solution: consistent hashing



Detour: Consistent hashing

Node ids hashed to many pseudorandom points on a 
circle 

Keys hashed onto circle, assigned to “next” node 

Idea used widely: 

- Developed for Akamai CDN 

- Used in Chord distributed hash table 

- Used in Dynamo distributed DB



Scaling Systems: Shards

Distribute portions of your dataset to various groups of 
nodes 

Question: how do we allocate a data item to a shard?
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Replicated, Sharded Database

Shard master decides 

- which group has which keys 

Shards operate independently 

How do clients know who has what keys?  

- Ask shard master?  Becomes the bottleneck! 

Avoid shard master communication if possible 

- Can clients predict which group has which keys



Recurring Problem

Client needs to access some resource 

Sharded for scalability 

How does client find specific server to use? 

Central redirection won’t scale!



Another scenario

Client
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Another scenario

Client

index.html
Links to: logo.jpg, jquery.js, …



Another scenario

Client

Cache 1 Cache 2 Cache 3

GET logo.jpg GET jquery.js



Another scenario

Client 2

Cache 1 Cache 2 Cache 3

GET logo.jpg GET jquery.js



Other Examples

Scalable shopping cart service 

Scalable email service 

Scalable cache layer (Memcache) 

Scalable network path allocation 

Scalable network function virtualization (NFV) 

…



What’s in common?

Want to assign keys to servers w/o communication 

Requirement 1: clients all have same assignment



Proposal 1

For n nodes, a key k goes to k mod n 

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”
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Proposal 1

For n nodes, a key k goes to k mod n 

Problems with this approach? 

- Likely to have distribution issues 

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed
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Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n 

Hash distributes keys uniformly 

But, new problem: what if we add a node? 

Cache 1 Cache 2 Cache 3

h(“a”)=1h(“abc”)=2 h(“b”)=3

Cache 4

h(“a”)=3 h(“b”)=4



h(“b”)=4h(“a”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n 

Hash distributes keys uniformly 

But, new problem: what if we add a node? 

- Redistribute a lot of keys! (on average, all but K/n)

Cache 1 Cache 2 Cache 3

h(“abc”)=2

Cache 4



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys uniformly distributed 

Requirement 3: can add/remove nodes w/o 
redistributing too many keys



First, hash the node ids 

Proposal 3: Consistent Hashing
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First, hash the node ids 

Keys are hashed, go to the “next” node
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First, hash the node ids 

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3
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Proposal 3: Consistent Hashing

Cache 1
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Proposal 3: Consistent Hashing
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“a”

“b”

What if we add a node?
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On average, K/n keys move
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Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4
Only “b” has to move! 

On average, K/n keys move 
but all between two nodes



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys evenly distributed 

Requirement 3: can add/remove nodes w/o 
redistributing too many keys 

Requirement 4: parcel out work of redistributing keys



First, hash the node ids to multiple locations 

Proposal 4: Virtual Nodes
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First, hash the node ids to multiple locations 

Proposal 4: Virtual Nodes
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First, hash the node ids to multiple locations 

As it turns out, hash functions come in families s.t. their 
members are independent. So this is easy! 

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 12 2 2 2 2
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Prop 4: Virtual NodesCache 1

Cache 2

Cache 3 Keys more evenly  
distributed and 

migration is evenly 
spread out. 



Requirements, revisited

Requirement 1: clients all have same assignment 

Requirement 2: keys evenly distributed 

Requirement 3: can add/remove nodes w/o 
redistributing too many keys 

Requirement 4: parcel out work of redistributing keys



Load Balancing At Scale

Suppose you have N servers 

Using consistent hashing with virtual nodes:  

- heaviest server has x% more load than the average 

- lightest server has x% less load than the average 

What is peak load of the system? 

- N * load of average machine? No! 

Need to minimize x



Key	Popularity

• What	if	some	keys	are	more	popular	than	others	
• Consistent	hashing	is	no	longer	load	balanced!	
• One	model	for	popularity	is	the	Zipf	distribution	
• Popularity	of	kth	most	popular	item,	1	<	c	<	2	
• 1/k^c	

• Ex:	1,	1/2,	1/3,	…	1/100	…	1/1000	…	1/10000



Zipf	“Heavy	Tail”	Distribution



Zipf	Examples

• Web	pages	
• Movies	
• Library	books	
• Words	in	text	
• Salaries	
• City	population	
• Twitter	followers	
• …	
Whenever	popularity	is	self-reinforcing



Proposal 5: Table Indirection

Consistent hashing is (mostly) stateless 

- Given list of servers and # of virtual nodes, client can 
locate key 

- Worst case unbalanced, especially with zipf 

Add a small table on each client 

- Table maps: virtual node -> server 

- Shard master reassigns table entries to balance load 



Consistent hashing in Dynamo
Each key has a “preference list”—next nodes around 
the circle 

- Skip duplicate virtual nodes 

- Ensure list spans data centers 

Slightly more complex: 

- Dynamo ensures keys evenly distributed 

- Nodes choose “tokens” (positions in ring) when 
joining the system 

- Tokens used to route requests 

- Each token = equal fraction of the keyspace



Replication in Dynamo

Three parameters: N, R, W 

- N: number of nodes each key replicated on 

- R: number of nodes participating in each read 

- W: number of nodes participating in each write 

Data replicated onto first N live nodes in pref list 

- But respond to the client after contacting W 

Reads see values from R nodes 

Common config: (3, 2, 2)



Sloppy quorum
Never block waiting for unreachable nodes 

- Try next node in list! 

Want get to see most recent put (as often as possible) 

Quorum: R + W > N 

- Don’t wait for all N 

- R and W will (usually) overlap 

Nodes ping each other 

- Each has independent opinion of up/down 

“Sloppy” quorum—nodes can disagree about which 
nodes are running



Replication in Dynamo

Coordinator (or client) sends each request (put or get) 
to first N reachable nodes in pref list 

- Wait for R replies (for read) or W replies (for write) 

Normal operation: gets see all recent versions 

Failures/delays: 

- Writes still complete quickly 

- Reads eventually see 



Ensuring eventual consistency

What if puts end up far away from first N? 

- Could happen if some nodes temporarily 
unreachable 

- Server remembers “hint” about proper location 

- Once reachability restored, forwards data 

Nodes periodically sync whole DB 

- Fast comparisons using Merkle trees



Dynamo deployments

~100 nodes each 

One for each service (parameters global) 

How to extend to multiple apps? 

Different apps use different (N, R, W) 

- Pretty fast, pretty durable: (3, 2, 2) 

- Many reads, few writes: (3, 1, 3) or (N, 1, N) 

- (3, 3, 3)? 

- (3, 1, 1)?



Dynamo results

Average much faster than 99.9% 

- But, 99.9% acceptable 

Inconsistencies rare in practice 

- Allow inconsistency, but minimize it 



Dynamo Revisited

Implemented as a library, not as a service 

- Each service (eg shopping cart) instantiated a 
Dynamo instance 

When an inconsistency happens: 

- Is it a problem in Dynamo? 

- Is it an intended side effect of Dynamo’s design? 

Every service runs its own ops => every service needs 
to be an expert at sloppy quorum



Dynamo DB

Replaced Dynamo the library with DynamoDB the 
service 

DynamoDB: strictly consistent key value store 

- validated with TLA and model checking 

- eventually consistent as an option 

- (afaik) no multikey transactions? 

Dynamo is eventually consistent 

Amazon is eventually strictly consistent!



Discussion

Why is symmetry valuable? Do seeds break it? 

Dynamo and SOA 

- What about malicious/buggy clients? 

Issues with hot keys? 

Transactions and strict consistency 

- Why were transactions implemented at Google 
and not at Amazon? 

- Do Amazon’s programmers not want strict 
consistency?




