
BYZANTINE FAULT TOLERANCE

Ellis Michael

A HIERARCHY OF FAULT MODELS

A HIERARCHY OF FAULT MODELS
No faults

A HIERARCHY OF FAULT MODELS
No faults

Crash faults

A HIERARCHY OF FAULT MODELS
No faults

Crash faults

Byzantine faults

A HIERARCHY OF FAULT MODELS
No faults

Crash faults

Byzantine faults

People who use tabs
instead of spaces

BYZANTINE FAULTS

• Also called "general" or "arbitrary" faults.

• Faulty nodes can take any actions. They can
send any messages, collude with each other, etc.
in an attempt to "trick" the non-faulty nodes and
subvert the protocol.

• Why this model?

STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can
cause both crashes and aberrant
behavior.

• Cosmic rays from outer space (!)
can and will randomly flip bits in
memory.

• Software bugs are all too
common.

• Security vulnerabilities can let
attackers into distributed systems.

STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can
cause both crashes and aberrant
behavior.

• Cosmic rays from outer space (!)
can and will randomly flip bits in
memory.

• Software bugs are all too
common.

• Security vulnerabilities can let
attackers into distributed systems.

STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can
cause both crashes and aberrant
behavior.

• Cosmic rays from outer space (!)
can and will randomly flip bits in
memory.

• Software bugs are all too
common.

• Security vulnerabilities can let
attackers into distributed systems.

STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can
cause both crashes and aberrant
behavior.

• Cosmic rays from outer space (!)
can and will randomly flip bits in
memory.

• Software bugs are all too
common.

• Security vulnerabilities can let
attackers into distributed systems.

STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can
cause both crashes and aberrant
behavior.

• Cosmic rays from outer space (!)
can and will randomly flip bits in
memory.

• Software bugs are all too
common.

• Security vulnerabilities can let
attackers into distributed systems.

We'll come back to these
at the end of the lecture.

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

- Stop processing requests.

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

- Stop processing requests.

- A leader could report incorrect results to a client.

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

- Stop processing requests.

- A leader could report incorrect results to a client.

- A follower could acknowledge a proposal and then discard it.

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

- Stop processing requests.

- A leader could report incorrect results to a client.

- A follower could acknowledge a proposal and then discard it.

- A follower could respond to prepare messages without all
previously acknowledged commands.

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

- Stop processing requests.

- A leader could report incorrect results to a client.

- A follower could acknowledge a proposal and then discard it.

- A follower could respond to prepare messages without all
previously acknowledged commands.

- A server could continually start new leader elections.

WHAT ABOUT PAXOS?
• Paxos tolerates a minority of processing failing by crashing.

• What could a malicious replica do to a Paxos deployment?

- Stop processing requests.

- A leader could report incorrect results to a client.

- A follower could acknowledge a proposal and then discard it.

- A follower could respond to prepare messages without all
previously acknowledged commands.

- A server could continually start new leader elections.

- ...

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

𝑛 servers

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers. 𝑛 servers

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers. 𝑛 servers

𝑛‒𝑓

𝑓

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers.

• What if two different servers contact 𝑛‒𝑓 quorums? If

they intersect at 𝑓 or fewer servers, that's not good.

𝑛 servers
𝑛‒𝑓

𝑓

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers.

• What if two different servers contact 𝑛‒𝑓 quorums? If

they intersect at 𝑓 or fewer servers, that's not good.

𝑛 servers

𝑓

𝑓

𝑛‒2𝑓

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers.

• What if two different servers contact 𝑛‒𝑓 quorums? If

they intersect at 𝑓 or fewer servers, that's not good.

𝑛 servers

𝑓

𝑓

𝑛‒2𝑓>𝑓

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers.

• What if two different servers contact 𝑛‒𝑓 quorums? If

they intersect at 𝑓 or fewer servers, that's not good.

• Therefore, we need at least 3𝑓+1 servers. Any two

quorums of 2𝑓+1= 𝑛‒𝑓 will intersect at at least one non-
faulty server.

𝑛 servers

𝑓

𝑓

𝑛‒2𝑓>𝑓

BYZANTINE QUORUMS

Obviously, if all servers are Byzantine, we can't guarantee
anything. How many servers do we need to tolerate 𝑓
faults?

• In order to make progress, we can only wait for 𝑛‒𝑓
servers.

• What if two different servers contact 𝑛‒𝑓 quorums? If

they intersect at 𝑓 or fewer servers, that's not good.

• Therefore, we need at least 3𝑓+1 servers. Any two

quorums of 2𝑓+1= 𝑛‒𝑓 will intersect at at least one non-
faulty server.

𝑛 servers

𝑓

𝑓

𝑛‒2𝑓>𝑓 Provable lower
bound.

SETUP

• 𝑛=3𝑓+1 servers, 𝑓 of which can be faulty. Unlimited clients.

• We assume public-key infrastructure. Servers and clients can sign messages
and verify signatures. Signatures aren't forgeable.

- We denote message 𝑚 with ⟨𝑚⟩, and message 𝑚 signed by 𝑝 as ⟨𝑚⟩𝑝 .

• Servers also have access to a digest function (cryptographic hash) on
messages, 𝐷(𝑚), which we assume is collision-resistant.

• The attacker controls 𝑓 faulty servers and knows the protocol the other
servers are running. The attacker also has control over the network and can
delay and reorder messages to all nodes.

GOAL

The goal, as in Paxos, is state-machine replication.

We want to guarantee safety when there are 𝑓 or
fewer failures (or an unlimited number of crash
failures) and liveness during periods of synchrony.

Easy, right?

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

view 2
leader

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

view 2
leader

view 3
leader

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

view 2
leader

view 3
leader

view 4
leader

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

view 2
leader

view 3
leader

view 4
leader

view 5
leader

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

view 2
leader

view 3
leader

view 4
leader

view 5
leaderview 𝑛

leader

PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles
Viewstamped Replication [Oki and Liskov '88].

• The system progresses through a series of
numbered views. There is a single leader
associated with each view.

• The clients will send their commands to the leader.

• The leader assigns the command a sequence
number (slot number) and forwards to the
followers.

• The protocol ensures that this decision is
permanently fixed; then they respond to the client.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

view 1
leader

view 2
leader

view 3
leader

view 𝑛+ 1
leader view 4

leader

view 5
leaderview 𝑛

leader

WHAT'S THE WORST THAT COULD HAPPEN?

• The leader could be faulty.

- It could assign different commands to the same
sequence number.

- It could try to send the wrong result to the client.

- It could ignore the clients altogether.

• The followers could also be faulty and lie about the
commands they received.

WHAT'S THE WORST THAT COULD HAPPEN?

• The leader could be faulty.

- It could assign different commands to the same
sequence number.

- It could try to send the wrong result to the client.

- It could ignore the clients altogether.

• The followers could also be faulty and lie about the
commands they received.

Clients wait for 𝑓+1
matching replies.

WHAT'S THE WORST THAT COULD HAPPEN?

• The leader could be faulty.

- It could assign different commands to the same
sequence number.

- It could try to send the wrong result to the client.

- It could ignore the clients altogether.

• The followers could also be faulty and lie about the
commands they received.

Clients wait for 𝑓+1
matching replies.

Followers can replace a
misbehaving leader with a

view change.

WHAT ABOUT FAULTY CLIENTS?

• We assume that there is some existing way for
clients to authenticate themselves with the
system.

• Access controls can be used to restrict what
each client is allowed to do.

• System administrators (or the system itself) can
revoke access for faulty clients.

PAPERS, PLEASE

• Servers don't take each others' word for
anything. They require proof.

• In order to verify that a client's command is
legitimate, they need the signed message from
the client (or proof thereof).

• All other steps in the system are taken only after
receiving signed messages from a quorum of
2𝒇+1 servers. Servers can also collect these
messages into certificates they can use to prove
to each other the legitimacy of certain steps.

PAPERS, PLEASE

• Servers don't take each others' word for
anything. They require proof.

• In order to verify that a client's command is
legitimate, they need the signed message from
the client (or proof thereof).

• All other steps in the system are taken only after
receiving signed messages from a quorum of
2𝒇+1 servers. Servers can also collect these
messages into certificates they can use to prove
to each other the legitimacy of certain steps.

PAPERS, PLEASE

• Servers don't take each others' word for
anything. They require proof.

• In order to verify that a client's command is
legitimate, they need the signed message from
the client (or proof thereof).

• All other steps in the system are taken only after
receiving signed messages from a quorum of
2𝒇+1 servers. Servers can also collect these
messages into certificates they can use to prove
to each other the legitimacy of certain steps.

Certificate

PROTOCOL OVERVIEW

Three sub-protocols:

1. Normal operations

Phase 1: Pre-prepare

Phase 2: Prepare

Phase 3: Commit

2. View change

3. Garbage collection

Server state:

• Current view

• State machine checkpoint

• Current state machine state

• Log of all not garbage
collected messages

NORMAL OPERATIONS (I)

leader 𝑙

follow
ers

client 𝑐

NORMAL OPERATIONS (I)

leader 𝑙

follow
ers

client 𝑐

𝑚=⟨REQUEST⟩𝑐

NORMAL OPERATIONS (I)

leader 𝑙

follow
ers

client 𝑐

𝑚=⟨REQUEST⟩𝑐

⟨⟨PRE-PREPARE, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑙, 𝑚⟩

ACCEPTING PRE-PREPARES

The leader sends ⟨⟨PRE-PREPARE, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑙, 𝑚⟩ to the followers.

• 𝑣 is the view number.

• 𝑛 is the sequence number assigned by the leader.

• 𝐷(𝑚) is a digest of the message (to reduce amount of public key crypto).

A follower accepts the PRE-PREPARE if:

• The client request is valid.

• The follower is in view 𝑣.

• The follower hasn't accepted a different PRE-PREPARE for the same sequence number in
the same view.

• The sequence number isn't too far ahead (to prevent sequence numbers from getting
unnecessarily large).

NORMAL OPERATIONS (II)

leader

follow
ers

client 𝑐

NORMAL OPERATIONS (II)

leader

follow
ers

client 𝑐

⟨PREPARE, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

PREPARE CERTIFICATES

• Once followers accept the PRE-PREPARE, they broadcast (signed) PREPARE
messages.

• Once a server has received 2𝑓 matching PREPAREs and the associated PRE-
PREPARE, it has a Prepare Certificate.

• Because quorums intersect at at least one honest server, and honest servers
don't prepare different commands in the same slot, no two prepare certificates
ever exist for the same view and same sequence number and different commands.

• However, a single server having a prepare certificate is not enough. What
about view changes? The new leader might not get the Prepare Certificate,
might not have enough information to pick the correct command in the new
view.

NORMAL OPERATIONS (III)

leader

follow
ers

client 𝑐

NORMAL OPERATIONS (III)

leader

follow
ers

client 𝑐

⟨COMMIT, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

COMMIT CERTIFICATES

• Once a server has a Prepare Certificate, it broadcasts a COMMIT
message.

• Once a server has 2𝑓+1 matching COMMITs (and the associated client
message), it has a Commit Certificate.

• A commit certificate proves that every quorum of 2𝑓+1 servers has at
least one non-faulty node with a Prepare Certificate. This command is
now stable and will be fixed in the same slot future view changes.

• The server can then execute the command (provided it executed all
previous commands) and reply to the client.

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

Client waits for 𝑓+1
matching replies, implying at
least one correct server has

a Commit Certificate.

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

Client waits for 𝑓+1
matching replies, implying at
least one correct server has

a Commit Certificate.

PRE-PREPARE

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

Client waits for 𝑓+1
matching replies, implying at
least one correct server has

a Commit Certificate.

PRE-PREPARE PREPARE

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

Client waits for 𝑓+1
matching replies, implying at
least one correct server has

a Commit Certificate.

PRE-PREPARE PREPARE COMMIT

NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

Client waits for 𝑓+1
matching replies, implying at
least one correct server has

a Commit Certificate.

PRE-PREPARE PREPARE COMMIT REPLY

VIEW CHANGE

VIEW CHANGE

• Followers monitor the leader. If the leader stops responding to pings or
does anything shady, they start a view change.

VIEW CHANGE

• Followers monitor the leader. If the leader stops responding to pings or
does anything shady, they start a view change.

• First, the follower sends ⟨VIEW-CHANGE, 𝑣+1, 𝒫⟩𝑝 to the leader of view

𝑣+1 and ⟨VIEW-CHANGE, 𝑣+1⟩𝑝 to the other followers. The follower stops
accepting messages for the old view.

- 𝒫 is the set of all Prepare Certificates (or Commit Certificates) the
follower has received.

VIEW CHANGE

• Followers monitor the leader. If the leader stops responding to pings or
does anything shady, they start a view change.

• First, the follower sends ⟨VIEW-CHANGE, 𝑣+1, 𝒫⟩𝑝 to the leader of view

𝑣+1 and ⟨VIEW-CHANGE, 𝑣+1⟩𝑝 to the other followers. The follower stops
accepting messages for the old view.

- 𝒫 is the set of all Prepare Certificates (or Commit Certificates) the
follower has received.

• Other followers join in the view change when they receive 𝑓+1 VIEW-
CHANGE messages.

STARTING A NEW VIEW

STARTING A NEW VIEW

Once the new leader receives 2𝑓 VIEW-CHANGE messages from the other servers, it

broadcasts ⟨NEW-VIEW, 𝑣+1, 𝒱, 𝒪⟩𝑝

STARTING A NEW VIEW

Once the new leader receives 2𝑓 VIEW-CHANGE messages from the other servers, it

broadcasts ⟨NEW-VIEW, 𝑣+1, 𝒱, 𝒪⟩𝑝

• 𝒱 is the set of VIEW-CHANGE messages it received.

STARTING A NEW VIEW

Once the new leader receives 2𝑓 VIEW-CHANGE messages from the other servers, it

broadcasts ⟨NEW-VIEW, 𝑣+1, 𝒱, 𝒪⟩𝑝

• 𝒱 is the set of VIEW-CHANGE messages it received.

• 𝒪 is a set of PRE-PREPARES in the new view, one for every sequence number less
than or equal to the largest sequence number seen in a Prepare Certificate in a
VIEW-CHANGE message. If there is a Prepare Certificate for that sequence number,
the PRE-PREPARE is for that command. Otherwise, the leader pre-prepares a no-op.

STARTING A NEW VIEW

Once the new leader receives 2𝑓 VIEW-CHANGE messages from the other servers, it

broadcasts ⟨NEW-VIEW, 𝑣+1, 𝒱, 𝒪⟩𝑝

• 𝒱 is the set of VIEW-CHANGE messages it received.

• 𝒪 is a set of PRE-PREPARES in the new view, one for every sequence number less
than or equal to the largest sequence number seen in a Prepare Certificate in a
VIEW-CHANGE message. If there is a Prepare Certificate for that sequence number,
the PRE-PREPARE is for that command. Otherwise, the leader pre-prepares a no-op.

Followers can independently verify that the view was started correctly from the set 𝒱.

If everything checks out, they start the new view and process the PRE-PREPARES in 𝒪
as normal.

𝑐1

1 2

𝑐2

3 4

𝑐3

5

𝑐4

6 7

𝑐5

8

𝑐6

9 10

𝑐1

1

⊥

2

𝑐2

3

⊥

4

⊥

5

𝑐4

6

⊥

7

𝑐5

8 9 10

=committed

=prepared

Status in previous view

Possible new leader's log

⊥=no-op

GARBAGE COLLECTION

• In the normal case, servers save their log of
commands and all of the messages they receive.

• In the non-Byzantine case, servers can periodically
compact their logs. They can bring out-of-date
servers back up-to-date with a state transfer.

• In the Byzantine case, a server can't just accept a
state transfer from another node. It needs proof.

GARBAGE COLLECTION (II)

• Servers periodically decide to take a checkpoint.

• Each server hashes the state of its state machine and broadcasts
⟨CHECKPOINT, 𝑛, 𝐷(𝑆)⟩𝑝 , where 𝑛 is the sequence number of the

last executed command and 𝐷(𝑆) is a hash of the state.

• Once a server has 𝑓+1 CHECKPOINT messages, it can compact its
log and discard old protocol messages. These messages serve as
a Checkpoint Certificate, proving the validity of the state.

BUT WHAT DID THAT BUY US?

BUT WHAT DID THAT BUY US?

• Before, we could only tolerate crash failures.

• PBFT tolerates any failures, as long as only less
than a third of the servers are faulty. (What
happens if more are faulty?)

• However, as far as I know, PBFT and friends
haven't seen wide adoption.

PERFORMANCE

• Extra round of communication
adds latency. (Can be avoided
with speculative execution.)

• Committing a single operation

requires 𝑂(𝑛2) messages. (This
can be improved, though at the
cost of added latency.)

• Cryptography operations are
slow! (Though the paper
describes some strategies to
speed them up using MACs.)

leader

follow
ers

client

leader

follow
ers

client
PAXOS

PBFT

[Mickens '13, The Saddest Moment]

HOW TO USE BFT?

In order to use BFT, we need to have some reason to
believe that the number of Byzantine failures is going to
be limited, or at least that the failures will be
independent and separated in time.

This probably holds true for hardware failures.

What about security flaws and software bugs?

One possible solution: 𝑛-version programming

