
KNOWLEDGE AND COMMON
KNOWLEDGE IN A DISTRIBUTED

ENVIRONMENT

Ellis Michael

ADMINISTRIVIA

• Everyone should have a GitLab repo. If not,
email me.

• Everyone should have signed up for Piazza.

• Lab 1 due in 1 week.

MUDDY FOREHEADS

• 𝑛 children, 𝑘 get mud on their
foreheads

• Children sit in circle.

• Teacher announces, "Someone
has mud on their forehead."

• Teacher repeatedly asks, "Raise
your hand if you know you
have mud on your forehead."

• What happens?

MUDDY FOREHEADS

• 𝑛 children, 𝑘 get mud on their
foreheads

• Children sit in circle.

• Teacher announces, "Someone
has mud on their forehead."

• Teacher repeatedly asks, "Raise
your hand if you know you
have mud on your forehead."

• What happens?

MUDDY FOREHEADS

Answer: On the 𝑘th round, all of the muddy children know they have mud on
their forehead, raise their hands.

"Proof" by induction on 𝒌. When 𝑘=1, the muddy child knows no other child is
muddy, must be muddy themself. 
When k=2, on the first round, both muddy children see each other, cannot
conclude they themselves are muddy. But after neither raises their hand, they
realize there must be two muddy children, raise their hand. 
In general, when 𝑘>1, after round 𝑘-1, if there were 𝑘-1 muddy foreheads, all of
those children would have raised their hands (by induction). Therefore, each

muddy child knows they're muddy and raises their hand on the 𝑘th round.

THE MUDDY FOREHEAD "PARADOX"

If 𝑘>1, the teacher didn't say anything
anyone didn't already know!

KNOWLEDGE AND COMMON KNOWLEDGE

• 𝜑 — a fact (e.g. "someone has mud on
their forehead")

• 𝐾𝑖𝜑 — agent 𝑖 knows 𝜑 
𝐾𝑖𝜑 ⊃ 𝜑 (knowledge of 𝜑 implies 𝜑)

• 𝐷𝐺𝜑 — group 𝐺 has distributed

knowledge of 𝜑

• 𝑆𝐺𝜑 — someone in group 𝐺 
knows 𝜑

• 𝐸𝐺𝜑 = 𝐸𝐺1𝜑 — everyone knows 𝜑

• 𝐸𝐺k+1𝜑 — everyone knows 𝐸𝐺k𝜑

• 𝐶𝐺𝜑 — 𝜑 is common knowledge in 𝐺
(everyone knows everyone knows
everyone knows everyone knows... 𝜑) 

𝐶𝐺𝜑 ⊃ ... ⊃ 𝐸𝐺k+1𝜑 ⊃ ... ⊃ 𝐸𝐺𝜑 ⊃ 𝑆𝐺𝜑 ⊃

𝐷𝐺𝜑 ⊃ 𝜑

AN EXAMPLE

You and your friends want to decide where to eat lunch.

• 𝜑 = "we will go to Chipotle"

• ∀𝑝 ∈ 𝐺 : 𝑝 wants to go to Chipotle ⊃ 𝐷𝐺𝜑

• You all tell your preferences to Alice privately. Then 𝐾Alice𝜑 holds

(implies 𝑆𝐺𝜑)

• Alice then tells everyone the result privately. 𝐸𝐺𝜑 holds.

• Alice then tells everyone that she told everyone, 𝐸𝐺2𝜑. etc.

• Alice announces the result publicly in front of the group, 𝐶𝐺𝜑.

MUDDY FOREHEADS AND COMMON KNOWLEDGE

The muddy foreheads argument implicitly requires
𝐸k𝜑, where 𝜑 is "someone has mud on their

forehead" and 𝑘 is the number of muddy foreheads.

At the beginning, children only have 𝐸k-1𝜑.

When the teacher spoke in plain sight, imparted
common knowledge (i.e., 𝐶𝜑 ⊃ 𝐸k𝜑).

A TWIST

What if, instead of announcing "someone has mud
on their forehead," the teacher pulled each
student aside and told them privately?

TWIST 2: ELECTRIC BOOGALOO

Teacher pulls each student aside.

Each student, unbeknownst to the others, planted
listening devices on all other students, heard the
teacher tell the other students "someone has mud
on their forehead"?

WHAT DO THEY REALLY NEED TO KNOW?

Fun problems:

• What is the weakest level of knowledge needed by
the children such that one or all of the muddy ones
will eventually raise their hand?

• Is it possible for one muddy child to raise their hand
and another to never realize their forehead is muddy?

Come to office hours!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will both
be defeated.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGE

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will both
be defeated.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGEAttack at
dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will both
be defeated.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGEAttack at
dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will both
be defeated.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGEAttack at
dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will both
be defeated.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGEAttack at
dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will be
repelled, routed.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGE

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will be
repelled, routed.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGE Roger!
Attack at

dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will be
repelled, routed.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGE Roger!
Attack at

dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will be
repelled, routed.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGE Roger!
Attack at

dawn!

COORDINATED ATTACK

• Two generals, on opposite sides of
a city on a hill.

• If they attack simultaneously, they
will be victorious. If one attacks
without the other, they will be
repelled, routed.

• Can communicate by messenger.
Messengers can get lost or be
captured.

• How do they ensure they can take
the city?

CARTHAGE Roger!
Attack at

dawn!

COORDINATED ATTACK

Answer: There does not exist a protocol to decide when and whether to
attack.

Proof by contradiction. Assume a protocol exists. Let the minimum

number of messages received in any terminating execution be 𝑛. Consider
the last message received in one such execution.

The sender's decision to attack does not depend on whether or not the
message is received; sender must attack. Since the sender attacks, the
receiver must also attack when the message is not received.

Therefore, the last message is irrelevant, and there exists an execution with

𝑛-1 message deliveries. 𝑛 was the minimum! Contradiction.

COORDINATED ATTACK

The coordinated attack
problem requires common
knowledge!

Each message only moves
one step up in the

hierarchy (i.e., 𝑆𝜑 → 𝐸1𝜑

→ 𝐸2𝜑 → 𝐸3𝜑 → ...),

never reaches 𝐶𝜑.

CARTHAGE

LAB 1: REMOTE PROCEDURE CALLS

Goal: Execute function call on remote machine
as if both the callee (server) and caller (client)
were on the same machine.

function, arguments

result

h/t for RPC slides: Tom Anderson

DISTRIBUTED COMPUTING MODEL

• Processes (also called nodes/machines/servers) communicate by passing
messages over a network

• Failure assumptions:
✦ No failures
✦ Fail-stop
✦ Crashes
✦ Byzantine
✦ etc.

• Network assumptions:
✦ Synchronous
✦ Asynchronous
✦ etc.

ASYNCHRONOUS MODEL

• Messages can be:
✦ delayed indefinitely
✦ dropped (indistinguishable from delayed)
✦ duplicated
✦ re-ordered

• No bound on clock skew across processes.

Weak assumptions ⇒ robust results

RPC SEMANTICS

• At least once (lab 1b) = when the call returns
successfully on the client side, was executed at least
once (maybe multiple times) on the server.
Continuously retries until successful.

• At most once = if the call returns successfully, was
executed once. Never executed more than once.

• Exactly once (lab 1c) = at most once + continuous
retries

GETTING TO AT-LEAST-ONCE

• RPC library waits for response for a while

• If none arrives, re-send the request

• Do this until successful

A KEY/VALUE STORE EXAMPLE

• Client sends Put(k, v)

• Server receives it, responds with PutOk(), gets
dropped by the network

• Client sends Put(k, v) again 

What if the operation is an Append?

BUT WHAT ABOUT TCP?

• TCP: reliable bi-directional byte stream between
two endpoints

✦ Retransmission of lost packets

✦ Duplicate detection

• But what if TCP times out and client reconnects?

WHEN AT-LEAST-ONCE IS SUFFICIENT

When there are no side-effects and operations are
idempotent.

Example: read-only operations.

AT-MOST-ONCE

• Client includes unique ID (UID) with each request
(same UID for re-send).

• Server RPC code detects duplicate requests, returns
previous reply instead of re-running the handler.

 if seen[uid] { 
 r = old[uid] 
 } else { 
 r = handler()  
 old[uid] = r  
 seen[uid] = true 
 }

SOME AT-MOST-ONCE ISSUES

• How do we ensure UID is unique?

✦ Big random number?

✦ Combine unique client ID (IP address?) with sequence
number?

✦ What if client crashes and restarts? Can it reuse the same
UID?

✦ In labs, nodes never restart. Equivalent to: every node gets
new ID on start

MORE ISSUES: WHEN CAN SERVER DISCARD
RESULTS?

• Option 1: Never?

• Option 2: unique client IDs, per-client RPC
sequence numbers, client includes "seen all replies
<= X" with every RPC

• Option 3: only allow client one outstanding RPC at
a time, arrival of X+1 allows server to discard all <= X

Labs use Option 3 .

EVEN MORE ISSUES

• Marshalling and parsing of messages?

• Version mismatch between client and servers?

• What if clients and servers crash and restart?

All out of scope for lab 1.

DID WE WIN?

Well, no. Not yet (but we will...)

• What if the server does crash? And its disk fails?

• If we replicate, how do we ensure that replicas
all execute the same RPCs (the same Commands)
in the same order? Isn't that just the
coordinated attack problem?

