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CONGRATS! YOU'RE NOW PAXOS EXPERTS!
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• Leader is a single bottleneck, processes 𝑂(𝑛) 
messages on every request.

• FLP means that liveness not guaranteed.

• More practically, Paxos can have bad availability 
during failure scenarios (e.g., if a leader fails, it 
takes time to elect a new one).
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• Constrain the problem.
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WHY NO APPENDS?

Simple way to implement consensus:

• All processes append their input value.

• All processes read the value.

• They all decide the first value that was 
appended.

If you can wait-free implement an 
appendable register, you can solve 

consensus (safety and liveness), which is 
impossible.



IMPLEMENTING A REGISTER

• We will use the client/server model, where 
servers are replicas storing the value and clients 
send reads and writes. 

• We want linearizability of reads and writes. 

• As usual, we want to tolerate up to 𝑓 server 
crash failures. Clients can also fail by crashing.
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progress. That is, no matter what steps other 
processes take, a correct client's operations are 
always completed in a finite number of steps.



NON-BLOCKING ALGORITHMS

• Lock-free algorithms guarantee system-wide 
progress. 

• Wait-free algorithms guarantee per-client 
progress. That is, no matter what steps other 
processes take, a correct client's operations are 
always completed in a finite number of steps.



HOW MANY SERVERS DO WE NEED?

(𝑓=1)

write



HOW MANY SERVERS DO WE NEED?

(𝑓=1)

write



HOW MANY SERVERS DO WE NEED?

(𝑓=1)

write
???



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

(𝑓=1)

write
???



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

(𝑓=1)

write



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

(𝑓=1)

write



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

(𝑓=1)

write

read



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

• We need to send writes to >𝑓 replicas, 
otherwise they could get lost forever.

(𝑓=1)

write

read



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

• We need to send writes to >𝑓 replicas, 
otherwise they could get lost forever.

• So we need at least 2𝑓+1 servers. And, in 

fact, we will use 2𝑓+1.

(𝑓=1)

write

read



HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓 

servers crash, we can wait for at most 𝑛 - 𝑓 
responses.

• We need to send writes to >𝑓 replicas, 
otherwise they could get lost forever.

• So we need at least 2𝑓+1 servers. And, in 

fact, we will use 2𝑓+1.

• Read quorum size plus write quorum size 
should be greater than 𝑛 (i.e., they should 
overlap). We'll use simple majorities.

(𝑓=1)
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read
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SWSR III
Servers' algorithm: 

• Upon receiving a write, update local timestamp and value if 
write's timestamp is greater; send ack. 

• Respond to reads with local timestamp and value. 

Writer's algorithm: 

• When writing, increment local timestamp, send timestamp 
and value to all. 

• Wait for acks from a majority. 

Reader's algorithm: 

• Read from a majority, take value with highest timestamp. 

• Maintain local value, return local value if servers' timestamps 
smaller.
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• Respond to reads with local timestamp and value. 

Writer's algorithm: 

• When writing, increment local timestamp, send timestamp 
and value to all. 

• Wait for acks from a majority. 

Reader's algorithm: 

• Read from a majority, take value with highest timestamp. 

• Maintain local value, return local value if servers' timestamps 
smaller.
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Assume clients can associate 
requests with responses (i.e., ignore 

responses from old requests)
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SRSW: WHAT ABOUT MULTIPLE READS?

r→   r

writer
w(   )

reader

Guaranteed to return 
the red value, stored in 

the reader's cache.



If there's only one writer and one reader, why do 
we need the servers at all? Couldn't the writer just 
send its value to the reader directly?
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MULTIPLE READERS, SINGLE WRITER (MRSW)

Does this previous solution just work?

What happens if there are multiple reads by 
different processes overlapping the same write?
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Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
from read after write-back is complete. 

• Later readers are guaranteed to read a 
value at least as new as the previously 
returned one.

reader

1

1

1

2

1



MRSW II

Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
from read after write-back is complete. 

• Later readers are guaranteed to read a 
value at least as new as the previously 
returned one.

reader

1

1

1

2

1



MRSW II

Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
from read after write-back is complete. 

• Later readers are guaranteed to read a 
value at least as new as the previously 
returned one.

reader

1

1

1

2

1

2



MRSW II

reader

1

1

1

2

1

2Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
from read after write-back is complete. 

• Later readers are guaranteed to read a 
value at least as new as the previously 
returned one.



MRSW II

reader

1

2

1

2

2

2

Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
from read after write-back is complete. 

• Later readers are guaranteed to read a 
value at least as new as the previously 
returned one.



MRSW II

reader

1

2

1

2

2

2

Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
from read after write-back is complete. 

• Later readers are guaranteed to read a 
value at least as new as the previously 
returned one.



MRSW II

reader

1

2

1

2

2

2

reader

Suppose a write is ongoing (or the writer 
died). 

• Reader reads value from a majority, takes 
the one with the highest timestamp. 

• Reader then performs a write-back, 
writing the value to a majority (not 
necessarily the same one). Only returns 
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MRSW III

reader

servers

read phase write-back phase



Do we always need to execute the write-back phase? 

What if we only care about sequential consistency? 
Do we care about the write-back phase at all?
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Does the previous solution just work?

What if writers use the same timestamp?

What if a write that starts after a previous write 
ended uses a smaller timestamp?

Prevented by 
breaking ties using 
writers ID, same as 

PMMC.
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MRMW II: ENSURING TIMESTAMP ORDERING

• Writer first queries a majority, 
updates its timestamp to be larger 
than largest timestamp found. 

• Writer then writes value to 
majority as usual. 

• Written value guaranteed to have a 
timestamp larger than previously 
written values, readers will read 
latest value (again, writer IDs break 
timestamp ties).
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MRMW III

writer
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query phase write phase



WAIT A SECOND!

• The methods for reading and writing are now 
the exact same. 

• The only difference is that a read writes and 
returns the value that was read, but a write 
writes the value to be written. 

• Also, for the record, there's no reason that 
processes can't be both readers and writers.



Attiya, Bar-Noy, Dolev 1995 ABD Algorithm



ABD VS. PAXOS

• Paxos doesn't guarantee liveness when the network 
is asynchrony. ABD guarantees wait-freedom, even 
when there are multiple writers. 

• Paxos-based state-machine replication (SMR) can 
support arbitrary state machines. The ABD 
algorithm only allows a read/write interface. 

• ABD removes the leader bottleneck, has the same 
latency cost as leader-based Paxos.



WHAT CAN WE DO WITH REGISTERS?

• Implement a read/write key-value store. 

• Emulate shared memory. 

Consensus isn't always the right problem! Don't 
solve it if you don't have to!


