
WAIT-FREE REGISTERS

Ellis Michael

CONGRATS! YOU'RE NOW PAXOS EXPERTS!

DRAWBACKS OF PAXOS

DRAWBACKS OF PAXOS

• Leader is a single bottleneck, processes 𝑂(𝑛)
messages on every request.

DRAWBACKS OF PAXOS

• Leader is a single bottleneck, processes 𝑂(𝑛)
messages on every request.

• FLP means that liveness not guaranteed.

DRAWBACKS OF PAXOS

• Leader is a single bottleneck, processes 𝑂(𝑛)
messages on every request.

• FLP means that liveness not guaranteed.

• More practically, Paxos can have bad availability
during failure scenarios (e.g., if a leader fails, it
takes time to elect a new one).

ALTERNATIVES

ALTERNATIVES

• Allow randomness (see Ben-Or lecture).

ALTERNATIVES

• Allow randomness (see Ben-Or lecture).

• Weaken the safety guarantees and accept
weaker consistency (at your own peril).

ALTERNATIVES

• Allow randomness (see Ben-Or lecture).

• Weaken the safety guarantees and accept
weaker consistency (at your own peril).

• Constrain the problem.

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

write()

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

write()

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

write()
ack

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

read()

REGISTERS

• Hold a single value. Want
multiple values? Use multiple
registers.

• Allows reads and writes only.
Does not allow appends or other
read-modify-write operations.

• Recall safe, regular, and
atomic/linearizable semantics.
We want linearizability.

read()

WHY NO APPENDS?

Simple way to implement consensus:

WHY NO APPENDS?

Simple way to implement consensus:

• All processes append their input value.

WHY NO APPENDS?

Simple way to implement consensus:

• All processes append their input value.

• All processes read the value.

WHY NO APPENDS?

Simple way to implement consensus:

• All processes append their input value.

• All processes read the value.

• They all decide the first value that was
appended.

WHY NO APPENDS?

Simple way to implement consensus:

• All processes append their input value.

• All processes read the value.

• They all decide the first value that was
appended.

If you can wait-free implement an
appendable register, you can solve

consensus (safety and liveness), which is
impossible.

IMPLEMENTING A REGISTER

• We will use the client/server model, where
servers are replicas storing the value and clients
send reads and writes.

• We want linearizability of reads and writes.

• As usual, we want to tolerate up to 𝑓 server
crash failures. Clients can also fail by crashing.

NON-BLOCKING ALGORITHMS

• Lock-free algorithms guarantee system-wide
progress.

• Wait-free algorithms guarantee per-client
progress. That is, no matter what steps other
processes take, a correct client's operations are
always completed in a finite number of steps.

NON-BLOCKING ALGORITHMS

• Lock-free algorithms guarantee system-wide
progress.

• Wait-free algorithms guarantee per-client
progress. That is, no matter what steps other
processes take, a correct client's operations are
always completed in a finite number of steps.

HOW MANY SERVERS DO WE NEED?

(𝑓=1)

write

HOW MANY SERVERS DO WE NEED?

(𝑓=1)

write

HOW MANY SERVERS DO WE NEED?

(𝑓=1)

write
???

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

(𝑓=1)

write
???

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

(𝑓=1)

write

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

(𝑓=1)

write

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

(𝑓=1)

write

read

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

• We need to send writes to >𝑓 replicas,
otherwise they could get lost forever.

(𝑓=1)

write

read

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

• We need to send writes to >𝑓 replicas,
otherwise they could get lost forever.

• So we need at least 2𝑓+1 servers. And, in

fact, we will use 2𝑓+1.

(𝑓=1)

write

read

HOW MANY SERVERS DO WE NEED?

• If we want to make progress even when 𝑓

servers crash, we can wait for at most 𝑛 - 𝑓
responses.

• We need to send writes to >𝑓 replicas,
otherwise they could get lost forever.

• So we need at least 2𝑓+1 servers. And, in

fact, we will use 2𝑓+1.

• Read quorum size plus write quorum size
should be greater than 𝑛 (i.e., they should
overlap). We'll use simple majorities.

(𝑓=1)

write

read

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

FIRST STEP: SINGLE READER, SINGLE WRITER (SWSR)

• Writer sends value to a
majority.

• Reader reads value from a
majority.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

???

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

1

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

1

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

1

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

2

2

2

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

2

2

2

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

2

2

2

SWSR II

• Writer sends a
timestamped value to a
majority.

• Reader reads value from a
majority, takes the one with
the highest timestamp.

• Since majorities intersect,
reader reads writer's value.

Does this work?

writer

reader

1

1

2

2

2

2

SWSR III
Servers' algorithm:

• Upon receiving a write, update local timestamp and value if
write's timestamp is greater; send ack.

• Respond to reads with local timestamp and value.

Writer's algorithm:

• When writing, increment local timestamp, send timestamp
and value to all.

• Wait for acks from a majority.

Reader's algorithm:

• Read from a majority, take value with highest timestamp.

• Maintain local value, return local value if servers' timestamps
smaller.

writer

reader

1

1

2

2

2

SWSR III
Servers' algorithm:

• Upon receiving a write, update local timestamp and value if
write's timestamp is greater; send ack.

• Respond to reads with local timestamp and value.

Writer's algorithm:

• When writing, increment local timestamp, send timestamp
and value to all.

• Wait for acks from a majority.

Reader's algorithm:

• Read from a majority, take value with highest timestamp.

• Maintain local value, return local value if servers' timestamps
smaller.

writer

reader

1

1

2

2

2

Assume clients can associate
requests with responses (i.e., ignore

responses from old requests)

SRSW: WHAT ABOUT MULTIPLE READS?

r→ r

writer
w()

reader

SRSW: WHAT ABOUT MULTIPLE READS?

r→ r

writer
w()

reader

Guaranteed to return
the red value, stored in

the reader's cache.

If there's only one writer and one reader, why do
we need the servers at all? Couldn't the writer just
send its value to the reader directly?

MULTIPLE READERS, SINGLE WRITER (MRSW)

Does this previous solution just work?

MULTIPLE READERS, SINGLE WRITER (MRSW)

Does this previous solution just work?

What happens if there are multiple reads by
different processes overlapping the same write?

MRSW: REVENGE OF THE READS

writer
w()

reader

r→
reader

w()

r→

MRSW: REVENGE OF THE READS

writer
w()

reader

r→
reader

w()

r→

Red value not yet
written to a majority,

still finds it.

MRSW: REVENGE OF THE READS

writer
w()

reader

r→
reader

w()

r→

Red value not yet
written to a majority,

still finds it. Reads from a different
majority, doesn't find

red value.

MRSW: REVENGE OF THE READS

writer
w()

reader

r→
reader

w()

r→

Red value not yet
written to a majority,

still finds it. Reads from a different
majority, doesn't find

red value.

Not linearizable!

MRSW II

Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

reader

1

1

1

2

1

MRSW II

Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

reader

1

1

1

2

1

MRSW II

Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

reader

1

1

1

2

1

2

MRSW II

reader

1

1

1

2

1

2Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

MRSW II

reader

1

2

1

2

2

2

Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

MRSW II

reader

1

2

1

2

2

2

Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

MRSW II

reader

1

2

1

2

2

2

reader

Suppose a write is ongoing (or the writer
died).

• Reader reads value from a majority, takes
the one with the highest timestamp.

• Reader then performs a write-back,
writing the value to a majority (not
necessarily the same one). Only returns
from read after write-back is complete.

• Later readers are guaranteed to read a
value at least as new as the previously
returned one.

MRSW III

reader

servers

read phase write-back phase

Do we always need to execute the write-back phase?

What if we only care about sequential consistency?
Do we care about the write-back phase at all?

PUTTING IT ALL TOGETHER: MRMW

Does the previous solution just work?

PUTTING IT ALL TOGETHER: MRMW

Does the previous solution just work?

What if writers use the same timestamp?

PUTTING IT ALL TOGETHER: MRMW

Does the previous solution just work?

What if writers use the same timestamp?

Prevented by
breaking ties using
writers ID, same as

PMMC.

PUTTING IT ALL TOGETHER: MRMW

Does the previous solution just work?

What if writers use the same timestamp?

What if a write that starts after a previous write
ended uses a smaller timestamp?

Prevented by
breaking ties using
writers ID, same as

PMMC.

MRMW: UNTIMELY TIMESTAMPS

r→

writer

reader

writer
w(, 2)

w(, 1)

MRMW: UNTIMELY TIMESTAMPS

r→

writer

reader

writer
w(, 2)

w(, 1)

Reads from a
majority, sees blue

value has the
highest timestamp.

MRMW: UNTIMELY TIMESTAMPS

r→

writer

reader

writer
w(, 2)

w(, 1)

Reads from a
majority, sees blue

value has the
highest timestamp.

Not linearizable!

MRMW II: ENSURING TIMESTAMP ORDERING

• Writer first queries a majority,
updates its timestamp to be larger
than largest timestamp found.

• Writer then writes value to
majority as usual.

• Written value guaranteed to have a
timestamp larger than previously
written values, readers will read
latest value (again, writer IDs break
timestamp ties).

writer

1

1

2

2

2

1

MRMW II: ENSURING TIMESTAMP ORDERING

• Writer first queries a majority,
updates its timestamp to be larger
than largest timestamp found.

• Writer then writes value to
majority as usual.

• Written value guaranteed to have a
timestamp larger than previously
written values, readers will read
latest value (again, writer IDs break
timestamp ties).

writer

1

1

2

2

2

1

MRMW II: ENSURING TIMESTAMP ORDERING

• Writer first queries a majority,
updates its timestamp to be larger
than largest timestamp found.

• Writer then writes value to
majority as usual.

• Written value guaranteed to have a
timestamp larger than previously
written values, readers will read
latest value (again, writer IDs break
timestamp ties).

writer

1

1

2

2

2

3

MRMW II: ENSURING TIMESTAMP ORDERING

• Writer first queries a majority,
updates its timestamp to be larger
than largest timestamp found.

• Writer then writes value to
majority as usual.

• Written value guaranteed to have a
timestamp larger than previously
written values, readers will read
latest value (again, writer IDs break
timestamp ties).

writer

1

1

2

2

3

2

MRMW II: ENSURING TIMESTAMP ORDERING

• Writer first queries a majority,
updates its timestamp to be larger
than largest timestamp found.

• Writer then writes value to
majority as usual.

• Written value guaranteed to have a
timestamp larger than previously
written values, readers will read
latest value (again, writer IDs break
timestamp ties).

writer

2

3

3

3

3

2

MRMW III

writer

servers

query phase write phase

WAIT A SECOND!

• The methods for reading and writing are now
the exact same.

• The only difference is that a read writes and
returns the value that was read, but a write
writes the value to be written.

• Also, for the record, there's no reason that
processes can't be both readers and writers.

Attiya, Bar-Noy, Dolev 1995 ABD Algorithm

ABD VS. PAXOS

• Paxos doesn't guarantee liveness when the network
is asynchrony. ABD guarantees wait-freedom, even
when there are multiple writers.

• Paxos-based state-machine replication (SMR) can
support arbitrary state machines. The ABD
algorithm only allows a read/write interface.

• ABD removes the leader bottleneck, has the same
latency cost as leader-based Paxos.

WHAT CAN WE DO WITH REGISTERS?

• Implement a read/write key-value store.

• Emulate shared memory.

Consensus isn't always the right problem! Don't
solve it if you don't have to!

