
RANDOMIZED CONSENSUS

Ellis Michael

RANDOMIZATION IS USEFUL ‒ RIGHT?

For the most part, we don't know!

BPP (bounded-error probabilistic polynomial time)
might equal P, it might not. There are many cases
in which we think randomness might help, but few
domains in which it has been proven to help.

It does for distributed systems though!

FLP, MY OLD FRIEND

Recall the FLP impossibility result.

Theorem: In an asynchronous environment in which a
single process can fail by crashing, there does not exist
a protocol which solves binary consensus.

Paxos doesn't save us. It doesn't guarantee liveness.

However, that result assumed a deterministic
computation model.

THAT'S SO RANDOM

Ben-Or's algorithm uses randomization to
guarantee consensus* for crash failures when  
𝑓 < 𝑛/2.

A variant even works for Byzantine faults!

INTUITION

• At first every process
proposes their input value.

• After that, they propose
random values.

• When enough processes
propose the same value, the
value is chosen.

• Eventually, that will happen!

INTUITION

• At first every process
proposes their input value.

• After that, they propose
random values.

• When enough processes
propose the same value, the
value is chosen.

• Eventually, that will happen!

𝑝1 𝑝2 𝑝3 𝑝n...

0→ → → →1 0 1

0 1 0 1

INTUITION

• At first every process
proposes their input value.

• After that, they propose
random values.

• When enough processes
propose the same value, the
value is chosen.

• Eventually, that will happen!

𝑝1 𝑝2 𝑝3 𝑝n...

0→ → → →1 0 1

0 1 0 1

𝑝1 𝑝2 𝑝3 𝑝n...

1 0 1 1

INTUITION

• At first every process
proposes their input value.

• After that, they propose
random values.

• When enough processes
propose the same value, the
value is chosen.

• Eventually, that will happen!

𝑝1 𝑝2 𝑝3 𝑝n...

0→ → → →1 0 1

0 1 0 1

𝑝1 𝑝2 𝑝3 𝑝n...

1 0 1 1

𝑝1 𝑝2 𝑝3 𝑝n...

0 0 0 0

INTUITION

• At first every process
proposes their input value.

• After that, they propose
random values.

• When enough processes
propose the same value, the
value is chosen.

• Eventually, that will happen!

𝑝1 𝑝2 𝑝3 𝑝n...

0→ → → →1 0 1

0 1 0 1

𝑝1 𝑝2 𝑝3 𝑝n...

1 0 1 1

𝑝1 𝑝2 𝑝3 𝑝n...

0 0 0 0

0 0 0 0

SETUP

• Again, we're considering binary consensus.

• Protocol proceeds in asynchronous rounds, where each round
has two phases.

• For each phase, processes broadcast their input values and wait
for 𝑛 – 𝑓 messages from the other processes.

• Each message is tagged with the round and phase number. (And
messages can be resent to deal with a lossy network. But once a
message is sent, that value is locked in for that process for that
phase/round.)

BEN-OR ALGORITHM
𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Processes send proposals for each phase
and then block and wait for the requisite
𝑛 – 𝑓 messages (including their own).

During the first phase, processes make a
preliminary proposal.

If they receive matching responses from
a majority in the first phase, they
propose that value in the second phase.
Otherwise, they propose ⊥ (a special null
value).

If they get enough non-⊥ responses
from the second phase, they decide.

DO WE HAVE CONSENSUS?

• Agreement: No two processes
decide different values.

• Integrity: Every process
decides at most one value, and
if a process decides a value 𝑣,

some process had 𝑣 as its input.

• Termination: Every correct
process eventually decides a
value.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

INTEGRITY I
If both 0 and 1 are input values to
processes, integrity is trivially satisfied.

Suppose all processes have the same
input value.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

INTEGRITY I
If both 0 and 1 are input values to
processes, integrity is trivially satisfied.

Suppose all processes have the same
input value.

• Then, they all send the same phase
1 value in round 1.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

INTEGRITY I
If both 0 and 1 are input values to
processes, integrity is trivially satisfied.

Suppose all processes have the same
input value.

• Then, they all send the same phase
1 value in round 1.

• So they all send that same value in
phase 2.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

INTEGRITY I
If both 0 and 1 are input values to
processes, integrity is trivially satisfied.

Suppose all processes have the same
input value.

• Then, they all send the same phase
1 value in round 1.

• So they all send that same value in
phase 2.

• So they all decide that value at the
end of round 1.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

FUN FACT

Lemma: No two processes receive
different non-⊥ phase 2 values in
the same round.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

FUN FACT

Lemma: No two processes receive
different non-⊥ phase 2 values in
the same round.

Suppose they did. That means
that one process received 0s
from a majority in phase 1 and
another received 1s.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

FUN FACT

Lemma: No two processes receive
different non-⊥ phase 2 values in
the same round.

Suppose they did. That means
that one process received 0s
from a majority in phase 1 and
another received 1s.

But majorities intersect!

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

AGREMENT + INTEGRITY II
𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process
decides a value, 0 w.l.o.g.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process
decides a value, 0 w.l.o.g.

If a process decided a value, it must have
received >𝑓 0s in phase 2.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process
decides a value, 0 w.l.o.g.

If a process decided a value, it must have
received >𝑓 0s in phase 2.

Which means that every process received at
least one 0 because they all wait for 𝑛 – 𝑓
messages. No process received a 1 by the
previous lemma.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process
decides a value, 0 w.l.o.g.

If a process decided a value, it must have
received >𝑓 0s in phase 2.

Which means that every process received at
least one 0 because they all wait for 𝑛 – 𝑓
messages. No process received a 1 by the
previous lemma.

Therefore, on round 𝑟 + 1 (and all
subsequent rounds), all processes propose 0
and all processes decide 0.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Safety ✔

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

TERMINATION

We know that if all processes propose
the same value for a round, they all
decide that value that round.

At worst, the probability of this
happening on any particular round is

1/2𝑛.

Why? By the previous lemma, all the
non-random values are identical.

Over time, the probability of this
happening on at least one round
converges to 1.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

Liveness ✔???

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

RANDOM TERMINATION

Ben-Or's algorithm guarantees termination with
probability 1.

Consensus requires termination, i.e., that there
does not exist an infinite execution in which a
correct process never decides.

Are these the same?

OTHER VALUES?

Binary consensus is conceptually simple but
not as useful. However, the algorithm can be to
support larger domains, even when the
processes don't know the domains a priori and
even when some processes don't receive input
values.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

OTHER VALUES?

Binary consensus is conceptually simple but
not as useful. However, the algorithm can be to
support larger domains, even when the
processes don't know the domains a priori and
even when some processes don't receive input
values.

• Processes without input values start by
proposing ⊥.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

OTHER VALUES?

Binary consensus is conceptually simple but
not as useful. However, the algorithm can be to
support larger domains, even when the
processes don't know the domains a priori and
even when some processes don't receive input
values.

• Processes without input values start by
proposing ⊥.

• Instead of randomly choosing from {0,1},
processes randomly choose from all non-⊥
values they've seen so far (in any message).
Only choose ⊥ as a last resort.

𝑎←input

loop:
 send_phase1(𝑎)

 𝐴←receive_phase1()

 if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2):

 𝑏←𝑎ʹ
 else:
 𝑏←⊥

 send_phase2(𝑏)

 𝐵←receive_phase2()

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓):

 decide(𝑏ʹ)

 if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥):

 𝑎←𝑏ʹ
 else:

 𝑎←choose_random({0,1})

HOW FAST CAN WE REACH CONSENSUS?

• The expected value of a geometric random

variable where 𝑝 = 1/2𝑛 is 2𝑛. Not great.

• The earlier analysis was not tight, however.
When 𝑓 << 𝑛/2, we get convergence much
quicker.

• More efficient algorithms exist.

DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency
systems, more on that later.)

Randomized techniques can make termination guarantees but:

DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency
systems, more on that later.)

Randomized techniques can make termination guarantees but:

• Performance is not predictable.

DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency
systems, more on that later.)

Randomized techniques can make termination guarantees but:

• Performance is not predictable.

• Convergence can still take multiple rounds.

DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency
systems, more on that later.)

Randomized techniques can make termination guarantees but:

• Performance is not predictable.

• Convergence can still take multiple rounds.

• Amount of communication needed is potentially high.

DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency
systems, more on that later.)

Randomized techniques can make termination guarantees but:

• Performance is not predictable.

• Convergence can still take multiple rounds.

• Amount of communication needed is potentially high.

In practice, when there's a stable leader (more on this next) Paxos reaches
consensus is a single round of communication. And if your network is not
behaving well, you've got bigger problems.

TAKEAWAYS

• Randomization can actually solve consensus*!
And that's neat!

• You can structure an asynchronous protocol
using rounds. It's potentially useful and certainly
an interesting way to think about asynchronous
computation.

