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RANDOMIZATION IS USEFUL ‒ RIGHT?

For the most part, we don't know! 

BPP (bounded-error probabilistic polynomial time) 
might equal P, it might not. There are many cases 
in which we think randomness might help, but few 
domains in which it has been proven to help. 

It does for distributed systems though!



FLP, MY OLD FRIEND

Recall the FLP impossibility result. 

Theorem: In an asynchronous environment in which a 
single process can fail by crashing, there does not exist 
a protocol which solves binary consensus. 

Paxos doesn't save us. It doesn't guarantee liveness. 

However, that result assumed a deterministic 
computation model.



THAT'S SO RANDOM

Ben-Or's algorithm uses randomization to 
guarantee consensus* for crash failures when  
𝑓 < 𝑛/2. 

A variant even works for Byzantine faults!



INTUITION

• At first every process 
proposes their input value. 

• After that, they propose 
random values. 

• When enough processes 
propose the same value, the 
value is chosen. 

• Eventually, that will happen!
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SETUP

• Again, we're considering binary consensus. 

• Protocol proceeds in asynchronous rounds, where each round 
has two phases. 

• For each phase, processes broadcast their input values and wait 
for 𝑛 – 𝑓 messages from the other processes. 

• Each message is tagged with the round and phase number. (And 
messages can be resent to deal with a lossy network. But once a 
message is sent, that value is locked in for that process for that 
phase/round.)



BEN-OR ALGORITHM
𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})

Processes send proposals for each phase 
and then block and wait for the requisite 
𝑛 – 𝑓 messages (including their own). 

During the first phase, processes make a 
preliminary proposal. 

If they receive matching responses from 
a majority in the first phase, they 
propose that value in the second phase. 
Otherwise, they propose ⊥ (a special null 
value). 

If they get enough non-⊥ responses 
from the second phase, they decide.



DO WE HAVE CONSENSUS?

• Agreement: No two processes 
decide different values. 

• Integrity: Every process 
decides at most one value, and 
if a process decides a value 𝑣, 

some process had 𝑣 as its input. 

• Termination: Every correct 
process eventually decides a 
value.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



INTEGRITY I
If both 0 and 1 are input values to 
processes, integrity is trivially satisfied.

Suppose all processes have the same 
input value.
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processes, integrity is trivially satisfied.

Suppose all processes have the same 
input value.

• Then, they all send the same phase 
1 value in round 1.
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INTEGRITY I
If both 0 and 1 are input values to 
processes, integrity is trivially satisfied.

Suppose all processes have the same 
input value.

• Then, they all send the same phase 
1 value in round 1.

• So they all send that same value in 
phase 2.

• So they all decide that value at the 
end of round 1.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
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                𝑎←choose_random({0,1})



FUN FACT

Lemma: No two processes receive 
different non-⊥ phase 2 values in 
the same round.
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Suppose they did. That means 
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FUN FACT

Lemma: No two processes receive 
different non-⊥ phase 2 values in 
the same round.

Suppose they did. That means 
that one process received 0s 
from a majority in phase 1 and 
another received 1s.

But majorities intersect!

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 
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AGREMENT + INTEGRITY II
𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process 
decides a value, 0 w.l.o.g.
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AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process 
decides a value, 0 w.l.o.g.

If a process decided a value, it must have 
received >𝑓 0s in phase 2.
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AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process 
decides a value, 0 w.l.o.g.

If a process decided a value, it must have 
received >𝑓 0s in phase 2.

Which means that every process received at 
least one 0 because they all wait for 𝑛 – 𝑓 
messages. No process received a 1 by the 
previous lemma.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
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                𝑏←⊥ 

        send_phase2(𝑏) 
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AGREMENT + INTEGRITY II

Let round 𝑟 be the first round any process 
decides a value, 0 w.l.o.g.

If a process decided a value, it must have 
received >𝑓 0s in phase 2.

Which means that every process received at 
least one 0 because they all wait for 𝑛 – 𝑓 
messages. No process received a 1 by the 
previous lemma.

Therefore, on round 𝑟 + 1 (and all 
subsequent rounds), all processes propose 0 
and all processes decide 0.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Safety ✔

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



TERMINATION

We know that if all processes propose 
the same value for a round, they all 
decide that value that round. 

At worst, the probability of this 
happening on any particular round is 

1/2𝑛. 

Why? By the previous lemma, all the 
non-random values are identical. 

Over time, the probability of this 
happening on at least one round 
converges to 1.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Liveness ✔???

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



RANDOM TERMINATION

Ben-Or's algorithm guarantees termination with 
probability 1. 

Consensus requires termination, i.e., that there 
does not exist an infinite execution in which a 
correct process never decides. 

Are these the same?



OTHER VALUES?

Binary consensus is conceptually simple but 
not as useful. However, the algorithm can be to 
support larger domains, even when the 
processes don't know the domains a priori and 
even when some processes don't receive input 
values.

𝑎←input 

loop: 
        send_phase1(𝑎) 
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        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
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                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



OTHER VALUES?

Binary consensus is conceptually simple but 
not as useful. However, the algorithm can be to 
support larger domains, even when the 
processes don't know the domains a priori and 
even when some processes don't receive input 
values.

• Processes without input values start by 
proposing ⊥.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



OTHER VALUES?

Binary consensus is conceptually simple but 
not as useful. However, the algorithm can be to 
support larger domains, even when the 
processes don't know the domains a priori and 
even when some processes don't receive input 
values.

• Processes without input values start by 
proposing ⊥.

• Instead of randomly choosing from {0,1}, 
processes randomly choose from all non-⊥ 
values they've seen so far (in any message). 
Only choose ⊥ as a last resort.

𝑎←input 

loop: 
        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



HOW FAST CAN WE REACH CONSENSUS?

• The expected value of a geometric random 

variable where 𝑝 = 1/2𝑛 is 2𝑛. Not great. 

• The earlier analysis was not tight, however. 
When 𝑓 << 𝑛/2, we get convergence much 
quicker. 

• More efficient algorithms exist.



DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency 
systems, more on that later.)

Randomized techniques can make termination guarantees but:
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DOES ANYONE ACTUALLY USE THIS?

As far as I know, not really. (Except in proof-of-stake cryptocurrency 
systems, more on that later.)

Randomized techniques can make termination guarantees but:

• Performance is not predictable.

• Convergence can still take multiple rounds.

• Amount of communication needed is potentially high.

In practice, when there's a stable leader (more on this next) Paxos reaches 
consensus is a single round of communication. And if your network is not 
behaving well, you've got bigger problems.



TAKEAWAYS

• Randomization can actually solve consensus*! 
And that's neat! 

• You can structure an asynchronous protocol 
using rounds. It's potentially useful and certainly 
an interesting way to think about asynchronous 
computation.


