
Paxos!

CSE 452

Slides from Lorenzo Alvisi, Doug Woos,

Tom Anderson

State machine replication

Want to agree on order of ops

Can think of operations as a log

Op1 Op2 Op3 Op4 Op5 Op6

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

I want to do
“Put k1 v1”

I want to do
“Put k2 v2”

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

I want to do
“Put k1 v1”

I want to do
“Put k2 v2”

Paxos
for Op1

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

Put k1 v1

I want to do
“Put k2 v2”

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

Put k1 v1

I want to do
“Put k2 v2”

Paxos
for Op2

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

Put k1 v1 Put k2 v2

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

Put k1 v1 Put k2 v2

Paxos?

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

I want to do
“Put k1 v1”

I want to do
“Put k2 v2”

8
7
6
5
4
3
2
1

3
2
1

5
4
3
2
1

Why Multiple Proposals?
Consensus is easy if only one client request at a time.

So, select a leader:

- clients send requests to leader

- leader picks what goes first, tells everyone else

What about split brain? (leader failed, or slow)

- select new leader?

- if old leader is slow, might have two leaders!

- if old and new leader are slow, might have three!

Each makes a proposal for what to go next

Non-Blocking Replication?
Suppose using primary/hot standby replication

How can we tell if primary has failed versus is
slow? (if slow, might end up with two primaries!)

Rely on view server to decide?

What if view server goes down? Replicate?

How can we tell if view server replica has failed
or is slow?

…

The Part-Time Parliament

Parliament determines
laws by passing sequence
of numbered decrees

Legislators can leave and
enter the chamber at
arbitrary times

No centralized record of
approved decrees–
instead, each legislator
carries a ledger

Government 101

No two ledgers contain contradictory
information

If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

any decree proposed by a legislator would
eventually be passed

any passed decree would appear on the
ledger of every legislator

Government 102

Paxos legislature is non-partisan,
progressive, and well-intentioned

Legislators only care that something is
agreed to, not what is agreed to

To deal with Byzantine legislators, see
Castro and Liskov, SOSP 99

Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not
corrupted

The Players

Proposers

Acceptors

Learners

Terminology

Value: a possible operation to put in the next
slot in the operation log (letter values)

Proposal: to select a value; proposals are
uniquely numbered

Accept: of a specific proposal, value

Chosen: Proposal/value accepted by a majority

Learned: Fact that proposal is chosen is known

Majorities

Why does Paxos use majorities?

Majorities intersect: for any two majorities S
and S’, there is some node in both S and S’

Majorities

Why does Paxos use majorities?

Majorities intersect: for any two majorities S
and S’, there is some node in both S and S’

The Game: Consensus
SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it

Our approach

Start with a broad definition of consensus

We should eventually choose a value

We should only choose one value

Refine/narrow definition to something we can
implement

At each step, Lamport must argue the
refinement is valid, e.g., P2a => P2

We should only choose one value

P2

P2a

Choosing a value

Use a single
acceptor

A

Q

M

K

M

A = Put k1 v1

K = PutAppend k2 v2

M = Get k3

Q = Delete k1

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

M
M

M
M is chosen!

M

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first
proposal that it receives

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first
proposal that it receives

...but what if we have multiple proposers, each
proposing a different value?

P1 + multiple proposers

A

Q

M

K

A

M

K

No value is chosen!

Handling multiple proposals
Acceptors must (be able to) accept more than
one proposal

To keep track of different proposals, assign a
natural number to each proposal

A proposal is then a pair (psn, value)

Different proposals have different psn

A proposal is chosen when it has been
accepted by a majority of acceptors

A value is chosen when a single proposal
with that value has been chosen

Assigning Proposal Numbers

Proposal numbers must be unique and infinite

A proposal number server won’t work…

Instead, assign each proposer an infinite slice

Proposer i of N gets: i, i+N, i+2N, i+3N, …

Proposal numbers

A

Q

M

K

0, 4, 8, 12, 16, …

1, 5, 9, 13, 17, …

2, 6, 10, 14, 18, …

3, 7, 11, 15, 19, …

Choosing a unique value
We need to guarantee that all chosen
proposals result in choosing the same value

We introduce a second requirement (by
induction on the proposal number):

P2. If a proposal with value v is chosen,
then every higher-numbered proposal that
is chosen has value v
which can be satisfied by:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
accepted by any acceptor has value v

A

Q

M

K

(2,Q)

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

(1,M)

(1,M)

M is chosen!

How does it know

it should not accept?

Another take on P2

Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal issued
by any proposer has value v

Implementing P2 (I)

Suppose a proposer p wants to issue a proposal
numbered n. What value should p propose?

If (n’,v) with n’ < n is chosen, then in every
majority set S of acceptors at least one acceptor
has accepted (n’,v)...

...so, if there is a majority set S where no acceptor
has accepted (or will accept) a proposal with
number less than n, then p can propose any value

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Implementing P2 (II)

What if for all S some acceptor ends up
accepting a pair (n’,v) with n’ < n?

Claim: p should propose the value of the highest
numbered proposal among all accepted proposals
numbered less than n

Proof: By induction on the number of proposals
issued after a proposal is chosen

P2b: If a proposal with value v is chosen, then every
higher-numbered proposal issued by any proposer has value
v

Implementing P2 (III)

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of a
majority of acceptors such that either:

no acceptor in S has accepted any proposal numbered
less than n, or

v is the value of the highest-numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S

P2b: If a proposal with value v is chosen, then every
higher-numbered proposal issued by any proposer has value
v

Implementing P2c

(1,A) (2,K) ?

What do we know about the third acceptor?

Could it have accepted (1,A)?

Could it have accepted (2,K)?

Implementing P2c

(1,A) (2,K) ?

What do we know about the third acceptor?

Could it have accepted (1,A)? No.

Could it have accepted (2,K)? Yes.

Proposal with highest number is the only
proposal that could have been chosen!

Implementing P2c

(1,A) (2,K) nil

How many nodes do we need to consult?

Consult all 3?

Implementing P2c

(1,A) (2,K) nil

How many nodes do we need to consult?

Consult all 3? We know nothing was chosen!

Want to be non-blocking if a majority are up

Implementing P2c

(1,A) (2,K) nil

How many nodes do we need to consult?

Consult all 3? We know nothing was chosen!

Want to be non-blocking if a majority are up

Consult 1 and 2?

Consult 1 and 3?

Consult 2 and 3?

Implementing P2c

(1,A) (2,K) nil

How many nodes do we need to consult?

Consult all 3? We know nothing was chosen!

Want to be non-blocking if a majority are up

Consult 1 and 2? Safe to propose (4,K)

Consult 1 and 3? Safe to propose (4,A)

Consult 2 and 3? Safe to propose (4,K)

P2c in action

No acceptor in S
has accepted any
proposal numbered
less than n

(4,K)

(1,A)

nil

S

(2,A)

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(4,K)

(3,Q)

(5,Q)

S

(18,Q)

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,K)

nil

(4,Q)

S(18,Q)

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,K)

nil

(4,Q)

S(18,Q)

(5,K
)

(5,K)

Future telling?

To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than n, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Future telling?

To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than n, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Avoid predicting the future by extracting a
promise from a majority of acceptors not to
subsequently accept any proposals numbered
less than n

 The proposer’s protocol (I)

A proposer chooses a new proposal number n and sends
a request to each member of some (majority) set of
acceptors, asking it to respond with:

a. A promise never again to accept a proposal
numbered less than n, and

b. The accepted proposal with highest number less
than n if any.

...call this a prepare request with number n

 The proposer’s protocol (II)
If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number n and value v, where v is

a. the value of the highest-numbered proposal
among the responses, or

b. is any value selected by the proposer if
responders returned no proposals

A proposer issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.

...call this an accept request.

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

It can always respond to a prepare request

It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered
 n iff it has not responded to a prepare
request having number greater than n

...which subsumes P1.

Small optimizations

If an acceptor receives a prepare request r numbered n
when it has already responded to a prepare request for
n’ > n, then the acceptor can simply ignore r.

An acceptor can also ignore prepare requests for
proposals it has already accepted

...so an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered prepare request to which it has
responded.

This information needs to be stored on stable storage to
allow restarts.

Choosing a value:
Phase 1

A proposer chooses a new n and sends <prepare,n>
to a majority of acceptors

If an acceptor a receives <prepare,n’>, where n’ > n
of any <prepare,n> to which it has responded, then it
responds to <prepare, n’ > with

a promise not to accept any more proposals
numbered less than n’

the highest numbered proposal (if any) that it has
accepted

Choosing a value:
Phase 2

If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

the value of the highest numbered proposal
among the responses

any value if the responses reported no proposals

If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded to
<prepare,n’> , where n’ > n

Learning chosen
values (I)

Once a value is chosen, learners should find out
about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value
has been chosen

☠

(4,K)

(7,M)

Was M
chosen?

Propose something!

Liveness

Progress is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

Implementing State
Machine Replication

Implement a sequence of separate instances of
consensus, where the value chosen by the ith
instance is the ith message in the sequence.

Each server assumes all three roles in each
instance of the algorithm.

Assume that the set of servers is fixed

The role of the leader

In normal operation, elect a single server to be
a leader. The leader acts as the distinguished
proposer in all instances of the consensus
algorithm.

Clients send commands to the leader, which decides
where in the sequence each command should appear.

If the leader, for example, decides that a client
command is the kth command, it tries to have the
command chosen as the value in the kth instance of
consensus.

Paxos and FLP

Paxos is always safe–despite asynchrony

Once a leader is elected, Paxos is live.

“Ciao ciao” FLP?

To be live, Paxos requires a single leader

“Leader election” is impossible in an
asynchronous system (gotcha!)

Given FLP, Paxos is the next best thing:
always safe, and live during periods of synchrony

Electing a Leader

A problem you’ll need to solve for lab 3…

Any leader election algorithm is safe

If zero leaders, no progress

If one leader, progress

If two+ leaders, progress sometimes

Electing a Leader

Ex: elect leader as the lowest numbered
node that is alive

Every proposer pings every other proposer

If you are the lowest, you’re the leader!

If your proposal is rejected, there are too
many proposers, so run another election

A new leader 		is elected...

Since				is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

 then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

λ

λ

λ

Stop-gap measures

All replicas can execute commands 1-10, but not 13-16
because 11 and 12 haven't yet been chosen.

 can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

 runs phase 2 of consensus for instance numbers 11
and 12.

Once consensus is achieved, all replicas can execute
all commands through 16.

λ

λ

To infinity, and beyond

 can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

 just sends a message with a sufficiently high
proposal number for all instances

An acceptor replies non trivially only for instances for
which it has already accepted a value

λ

λ

Delegation
Paxos is expensive compared to primary/
backup; can we get the best of both worlds?

Paxos group leases responsibility for order
of operations to a primary, for a limited
period

If primary fails, wait for lease to expire,
then can resume operation (after checking
backups)

If no failures, can refresh lease as needed

Byzantine Paxos

What if a Paxos node goes rogue? (or
two?)

Solution sketch: instead of just one node
in the overlap between majority sets, need
more: 2f + 1, to handle f byzantine nodes

