Remote Procedure Call

Tom Anderson



Why Are Distributed Systems Hard?

* Asynchrony

— Different nodes run at different speeds

— Messages can be unpredictably, arbitrarily delayed
e Failures (partial and ambiguous)

— Parts of the system can crash

— Can’t tell crash from slowness
* Concurrency and consistency

— Replicated state, cached on multiple nodes
— How to keep many copies of data consistent?



Why Are Distributed Systems Hard?

* Performance
— Have to efficiently coordinate many machines
— Performance is variable and unpredictable
— Tail latency: only as fast as slowest machine

* Testing and verification
— Almost impossible to test all failure cases
— Proofs (emerging field) are really hard

* Security
— Need to assume adversarial nodes



Three-tier Web Architecture

e Scalable number of front-end web servers

— Stateless (“RESTful”): if crash can reconnect the
user to another server

* Scalable number of cache servers
— Lower latency (better for front end)
— Reduce load (better for database)
— Q: how do we keep the cache layer consistent?
* Scalable number of back-end database servers
— Run carefully designed distributed systems code



And Beyond

 Worldwide distribution of users
— Cross continent Internet delay ~ half a second
— Amazon: reduction in sales if latency > 100ms

* Many data centers
— One near every user
— Smaller data centers just have web and cache layer
— Larger data centers include storage layer as well

— Q: how do we coordinate updates across DCs?



MapReduce Computational Model

For each key k with value v, compute a new set of
key-value pairs:

map (k,v) = list(k’,v’)

For each key k’ and list of values v’, compute a new
(hopefully smaller) list of values:

reduce (k’,list(v’)) = list(v"’)

User writes map and reduce functions.

Framework takes care of parallelism, distribution,
and fault tolerance.



MapReduce Example: grep
find lines that match text pattern

1. Master splits file into M almost equal chunks at
line boundaries

2. Master hands each partition to mapper
3. map phase: for each partition, call map on each
line of text

— search line for word

— output line number, line of text if word shows up, nil
if not

4. Partition results among R reducers

— map writes each output record into a file, hashed on
key



Example: grep

5. Reduce phase: each reduce job collects 1/R
output from each Map job

— all map jobs have completed!

— Reduce function is identity: v1 in, v1 out

6. merge phase: master merges R outputs



MapReduce (or ML or ...) Architecture

Scheduler accepts MapReduce jobs
— finds a MapReduce master and set of avail workers

For each job, MapReduce master <array>

— farms tasks to workers; restarts failed jobs; syncs task
completion

Worker <array>

— executes Map and Reduce tasks

Storage <array>

— stores initial data set, intermediate files, end results



Remote Procedure Call (RPC)

A request from the client to execute a function
on the server.

— To the client, looks like a procedure call

— To the server, looks like an implementation of a
procedure call



Remote Procedure Call (RPC)

A request from the client to execute a function on the server.

* Onclient
— Ex: result = DoMap(worker, i)
— Parameters marshalled into a message (can be arbitrary types)
— Message sent to server (can be multiple pkts)
— Wait for reply

* Onserver
— message is parsed
— operation DoMap(i) invoked
— Result marshalled into a message (can be multiple pkts)
— Message sent to client



RPC implementation

DoMap (worker,

* RPC library

Serialize args
Open connection

/\ O dalc

¥

OS

TCP/IP write TCP/IP read

* Transport

i) *

Read data
Deserialize reply

-~
2~

Map (worker, 1)

* RPC library

Serialize rd
Write data

ad data
alize args




RPC vs. Procedure Call

 What is equivalent of:
— The name of the procedure?
— The calling convention?

— The return value?

— The return address?



RPC vs. Procedure Call

Binding
— Client needs a connection to server
— Server must implement the required function

— What if the server is running a different version
of the code?

Performance
— procedure call: maybe 10 cycles =~3 ns

— RPCin data center: 10 microseconds => ~1K
slower

— RPCin the wide area: millions of times slower



RPC vs. Procedure Call

Failures
— What happens if messages get dropped?
— What if client crashes?
— What if server crashes?

— What if server crashes after performing op but
before replying?

— What if server appears to crash but is slow?
— What if network partitions?



Semantics

* Semantics = meaning

* reply == ok =>7???
* reply =0k => 7?77



Semantics

* At least once (NFS, DNS, lab 1b)

— true: executed at least once
— false: maybe executed, maybe multiple times

* At most once (lab 1c)
— true: executed once
— false: maybe executed, but never more than once

* Exactly once
— true: executed once
— false: never returns false



At Least Once

RPC library waits for response for a while
f none arrives, re-send the request

Do this a few times

Still no response -- return an error to the
application



Non-replicated key/value server

Client sends Put k v
Server gets request, but network drops reply

Client sends Put k v again
— should server respond "yes"?
— or"no"?

What if op is “append”?



Does TCP Fix This?

 TCP: reliable bi-directional byte stream between
two endpoints

— Retransmission of lost packets
— Duplicate detection

e But what if TCP times out and client reconnects?

— Browser connects to Amazon
— RPC to purchase book

— Wifi times out during RPC

— Browser reconnects



When does at-least-once work?

* |f no side effects
— read-only operations (or idempotent ops)

* Example: MapReduce
 Example: NFS

— readFileBlock

— writeFileBlock



At Most Once

Client includes unique ID (UID) with each request
— use same UID for re-send

Server RPC code detects duplicate requests
— return previous reply instead of re-running handler
if seen[uid] {
r = old[uid]
} else {
r = handler()
old[uid] =r
seenfuid] = true



Some At-Most-Once Issues

How do we ensure UID is unique?
— Big random number?
— Combine unique client ID (IP address?) with seq #7?

— What if client crashes and restarts? Can it reuse the
same UID?

— |In labs, nodes never restart

— Equivalent to: every node gets new ID on start



When Can Server to Discard Old RPCs?

Option 1:
Never?
Option 2:
unique client IDs
per-client RPC sequence numbers
client includes "seen all replies <= X" with every RPC
Option 3: only allow client one outstanding RPC at a time
arrival of seqg+1 allows server to discard all <= seq
Labs use Option 3



What if Server Crashes?

If at-most-once list of recent RPC results is
stored in memory, server will forget and accept
duplicate requests when it reboots
— Does server need to write the recent RPC results
to disk?
— If replicated, does replica also need to store
recent RPC results?
In Labs, server gets new address on restart

— Client messages aren’t delivered to restarted
server



