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Why	Are	Distributed	Systems	Hard?	

•  Asynchrony	
– Different	nodes	run	at	different	speeds		
– Messages	can	be	unpredictably,	arbitrarily	delayed	

•  Failures	(partial	and	ambiguous)	
–  Parts	of	the	system	can	crash	
–  Can’t	tell	crash	from	slowness	

•  Concurrency	and	consistency	
–  Replicated	state,	cached	on	multiple	nodes	
– How	to	keep	many	copies	of	data	consistent?	



Why	Are	Distributed	Systems	Hard?	

•  Performance	
– Have	to	efficiently	coordinate	many	machines	
– Performance	is	variable	and	unpredictable	
– Tail	latency:	only	as	fast	as	slowest	machine	

•  Testing	and	verification	
– Almost	impossible	to	test	all	failure	cases	
– Proofs	(emerging	field)	are	really	hard	

•  Security	
– Need	to	assume	adversarial	nodes	



Three-tier	Web	Architecture	

•  Scalable	number	of	front-end	web	servers	
– Stateless	(“RESTful”):	if	crash	can	reconnect	the	
user	to	another	server	

•  Scalable	number	of	cache	servers	
– Lower	latency	(better	for	front	end)	
– Reduce	load	(better	for	database)	
– Q:	how	do	we	keep	the	cache	layer	consistent?	

•  Scalable	number	of	back-end	database	servers	
– Run	carefully	designed	distributed	systems	code	



And	Beyond	

•  Worldwide	distribution	of	users	
– Cross	continent	Internet	delay	~	half	a	second	
– Amazon:	reduction	in	sales	if	latency	>	100ms	

•  Many	data	centers	
– One	near	every	user	
– Smaller	data	centers	just	have	web	and	cache	layer	
– Larger	data	centers	include	storage	layer	as	well	
– Q:	how	do	we	coordinate	updates	across	DCs?	



MapReduce	Computational	Model	
For	each	key	k	with	value	v,	compute	a	new	set	of	
key-value	pairs:	
	map	(k,v)	→	list(k’,v’)	

For	each	key	k’	and	list	of	values	v’,	compute	a	new	
(hopefully	smaller)	list	of	values:	
		reduce	(k’,list(v’))	→	list(v’’)	

	
User	writes	map	and	reduce	functions.	
Framework	takes	care	of	parallelism,	distribution,	
and	fault	tolerance.	
	
	



MapReduce	Example:	grep	
find	lines	that	match	text	pattern	

1.  Master	splits	file	into	M	almost	equal	chunks	at	
line	boundaries	

2.  Master	hands	each	partition	to	mapper		
3.  map	phase:		for	each	partition,	call	map	on	each	

line	of	text	
–  		search	line	for	word	
–  		output	line	number,	line	of	text	if	word	shows	up,	nil	
if	not	

4.		Partition	results	among	R	reducers	
–  map	writes	each	output	record	into	a	file,	hashed	on	

key	
			



Example:	grep	

	5.	Reduce	phase:	each	reduce	job	collects	1/R	
output	from	each	Map	job	
–  all	map	jobs	have	completed!	
–  Reduce	function	is	identity:	v1	in,	v1	out	

6.	merge	phase:	master	merges	R	outputs	
	



MapReduce	(or	ML	or	…)	Architecture	

•  Scheduler	accepts	MapReduce	jobs	
–  finds	a	MapReduce	master	and	set	of	avail	workers	

•  For	each	job,	MapReduce	master	<array>	
–  farms	tasks	to	workers;	restarts	failed	jobs;	syncs	task	
completion	

•  Worker	<array>	
– executes	Map	and	Reduce	tasks		

•  Storage	<array>	
– stores	initial	data	set,	intermediate	files,	end	results	



Remote	Procedure	Call	(RPC)	

	
	
A	request	from	the	client	to	execute	a	function	
on	the	server.	
–  To	the	client,	looks	like	a	procedure	call	
–  To	the	server,	looks	like	an	implementation	of	a	

procedure	call	



Remote	Procedure	Call	(RPC)	

A	request	from	the	client	to	execute	a	function	on	the	server.	
•  On	client	
–  Ex:	result	=	DoMap(worker,	i)	
–  Parameters	marshalled	into	a	message	(can	be	arbitrary	types)	
–  Message	sent	to	server	(can	be	multiple	pkts)	
–  Wait	for	reply	

•  On	server	
–  message	is	parsed	
–  operation	DoMap(i)	invoked	
–  Result	marshalled	into	a	message	(can	be	multiple	pkts)	
–  Message	sent	to	client	
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RPC	vs.	Procedure	Call	

•  What	is	equivalent	of:	
– The	name	of	the	procedure?	
– The	calling	convention?	
– The	return	value?	
– The	return	address?	



RPC	vs.	Procedure	Call	

Binding	
–  Client	needs	a	connection	to	server	
–  Server	must	implement	the	required	function	
–  What	if	the	server	is	running	a	different	version	

of	the	code?	
Performance	
–  		procedure	call:	maybe	10	cycles	=	~3	ns	
–  		RPC	in	data	center:	10	microseconds	=>	~1K	
slower	

–  		RPC	in	the	wide	area:	millions	of	times	slower	



RPC	vs.	Procedure	Call	

Failures	
– What	happens	if	messages	get	dropped?	
– What	if	client	crashes?	
– What	if	server	crashes?	
– What	if	server	crashes	after	performing	op	but	
before	replying?	

– What	if	server	appears	to	crash	but	is	slow?	
– What	if	network	partitions?	



Semantics	

•  Semantics	=	meaning	

•  reply	==	ok	=>	???	
•  reply	!=	ok	=>	???	



Semantics	

•  At	least	once	(NFS,	DNS,	lab	1b)	
–  true:	executed	at	least	once	
–  false:		maybe	executed,	maybe	multiple	times	

•  At	most	once	(lab	1c)	
–  true:	executed	once	
–  false:		maybe	executed,	but	never	more	than	once	

•  Exactly	once	
–  true:	executed	once	
–  false:	never	returns	false	



At	Least	Once	

RPC	library	waits	for	response	for	a	while	
If	none	arrives,	re-send	the	request	
Do	this	a	few	times	
Still	no	response	--	return	an	error	to	the	
application	



Non-replicated	key/value	server	

Client	sends	Put	k	v	
Server	gets	request,	but	network	drops	reply	
Client	sends	Put	k	v	again	
–  		should	server	respond	"yes"?	
–  		or	"no"?	

	
What	if	op	is	“append”?	
	



Does	TCP	Fix	This?	

•  TCP:	reliable	bi-directional	byte	stream	between	
two	endpoints	
–  Retransmission	of	lost	packets	
– Duplicate	detection	

•  But	what	if	TCP	times	out	and	client	reconnects?	
–  Browser	connects	to	Amazon	
–  RPC	to	purchase	book	
– Wifi	times	out	during	RPC	
–  Browser	reconnects	



When	does	at-least-once	work?	

•  If	no	side	effects	
–  read-only	operations	(or	idempotent	ops)	

•  Example:	MapReduce	
•  Example:	NFS	
–  readFileBlock	
– writeFileBlock	



At	Most	Once	

Client	includes	unique	ID	(UID)	with	each	request	
–  use	same	UID	for	re-send	

Server	RPC	code	detects	duplicate	requests	
–  return	previous	reply	instead	of	re-running	handler	
if	seen[uid]	{	
						r	=	old[uid]	
}	else	{	
						r	=	handler()	
						old[uid]	=	r	
						seen[uid]	=	true	
}	



Some	At-Most-Once	Issues	

How	do	we	ensure	UID	is	unique?	
–  Big	random	number?	
–  Combine	unique	client	ID	(IP	address?)	with	seq	#?	
–  What	if	client	crashes	and	restarts?		Can	it	reuse	the	

same	UID?	
–  In	labs,	nodes	never	restart	
–  Equivalent	to:	every	node	gets	new	ID	on	start	



When	Can	Server	to	Discard	Old	RPCs?	

Option	1:	
	Never?	

Option	2:	
						unique	client	IDs	
						per-client	RPC	sequence	numbers	
						client	includes	"seen	all	replies	<=	X"	with	every	RPC	
Option	3:	only	allow	client	one	outstanding	RPC	at	a	time	
						arrival	of	seq+1	allows	server	to	discard	all	<=	seq	
Labs	use	Option	3	
	



What	if	Server	Crashes?	

If	at-most-once	list	of	recent	RPC	results	is	
stored	in	memory,	server	will	forget	and	accept	
duplicate	requests	when	it	reboots	
–  Does	server	need	to	write	the	recent	RPC	results	

to	disk?	
–  If	replicated,	does	replica	also	need	to	store	

recent	RPC	results?	
In	Labs,	server	gets	new	address	on	restart	
–  	Client	messages	aren’t	delivered	to	restarted	
server	


