
Remote	Procedure	Call	

Tom	Anderson	



Why	Are	Distributed	Systems	Hard?	

•  Asynchrony	
– Different	nodes	run	at	different	speeds		
– Messages	can	be	unpredictably,	arbitrarily	delayed	

•  Failures	(partial	and	ambiguous)	
–  Parts	of	the	system	can	crash	
–  Can’t	tell	crash	from	slowness	

•  Concurrency	and	consistency	
–  Replicated	state,	cached	on	multiple	nodes	
– How	to	keep	many	copies	of	data	consistent?	



Why	Are	Distributed	Systems	Hard?	

•  Performance	
– Have	to	efficiently	coordinate	many	machines	
– Performance	is	variable	and	unpredictable	
– Tail	latency:	only	as	fast	as	slowest	machine	

•  Testing	and	verification	
– Almost	impossible	to	test	all	failure	cases	
– Proofs	(emerging	field)	are	really	hard	

•  Security	
– Need	to	assume	adversarial	nodes	



Three-tier	Web	Architecture	

•  Scalable	number	of	front-end	web	servers	
– Stateless	(“RESTful”):	if	crash	can	reconnect	the	
user	to	another	server	

•  Scalable	number	of	cache	servers	
– Lower	latency	(better	for	front	end)	
– Reduce	load	(better	for	database)	
– Q:	how	do	we	keep	the	cache	layer	consistent?	

•  Scalable	number	of	back-end	database	servers	
– Run	carefully	designed	distributed	systems	code	



And	Beyond	

•  Worldwide	distribution	of	users	
– Cross	continent	Internet	delay	~	half	a	second	
– Amazon:	reduction	in	sales	if	latency	>	100ms	

•  Many	data	centers	
– One	near	every	user	
– Smaller	data	centers	just	have	web	and	cache	layer	
– Larger	data	centers	include	storage	layer	as	well	
– Q:	how	do	we	coordinate	updates	across	DCs?	



MapReduce	Computational	Model	
For	each	key	k	with	value	v,	compute	a	new	set	of	
key-value	pairs:	
	map	(k,v)	→	list(k’,v’)	

For	each	key	k’	and	list	of	values	v’,	compute	a	new	
(hopefully	smaller)	list	of	values:	
		reduce	(k’,list(v’))	→	list(v’’)	

	
User	writes	map	and	reduce	functions.	
Framework	takes	care	of	parallelism,	distribution,	
and	fault	tolerance.	
	
	



MapReduce	Example:	grep	
find	lines	that	match	text	pattern	

1.  Master	splits	file	into	M	almost	equal	chunks	at	
line	boundaries	

2.  Master	hands	each	partition	to	mapper		
3.  map	phase:		for	each	partition,	call	map	on	each	

line	of	text	
–  		search	line	for	word	
–  		output	line	number,	line	of	text	if	word	shows	up,	nil	
if	not	

4.		Partition	results	among	R	reducers	
–  map	writes	each	output	record	into	a	file,	hashed	on	

key	
			



Example:	grep	

	5.	Reduce	phase:	each	reduce	job	collects	1/R	
output	from	each	Map	job	
–  all	map	jobs	have	completed!	
–  Reduce	function	is	identity:	v1	in,	v1	out	

6.	merge	phase:	master	merges	R	outputs	
	



MapReduce	(or	ML	or	…)	Architecture	

•  Scheduler	accepts	MapReduce	jobs	
–  finds	a	MapReduce	master	and	set	of	avail	workers	

•  For	each	job,	MapReduce	master	<array>	
–  farms	tasks	to	workers;	restarts	failed	jobs;	syncs	task	
completion	

•  Worker	<array>	
– executes	Map	and	Reduce	tasks		

•  Storage	<array>	
– stores	initial	data	set,	intermediate	files,	end	results	



Remote	Procedure	Call	(RPC)	

	
	
A	request	from	the	client	to	execute	a	function	
on	the	server.	
–  To	the	client,	looks	like	a	procedure	call	
–  To	the	server,	looks	like	an	implementation	of	a	

procedure	call	



Remote	Procedure	Call	(RPC)	

A	request	from	the	client	to	execute	a	function	on	the	server.	
•  On	client	
–  Ex:	result	=	DoMap(worker,	i)	
–  Parameters	marshalled	into	a	message	(can	be	arbitrary	types)	
–  Message	sent	to	server	(can	be	multiple	pkts)	
–  Wait	for	reply	

•  On	server	
–  message	is	parsed	
–  operation	DoMap(i)	invoked	
–  Result	marshalled	into	a	message	(can	be	multiple	pkts)	
–  Message	sent	to	client	



RPC	library	

Read	data	
Deserialize	args	

Transport	

CSE	461	

RPC	implementation	
DoMap(worker, i) Map(worker, i)

RPC	library	

Serialize	args	
Open	connection	
Write	data	

Read	data	
Deserialize	reply	

Serialize	reply	
Write	data	

Transport	

OS	

TCP/IP	write	

OS	

TCP/IP	read	TCP/IP	write	TCP/IP	read	

x	 x	x	



RPC	vs.	Procedure	Call	

•  What	is	equivalent	of:	
– The	name	of	the	procedure?	
– The	calling	convention?	
– The	return	value?	
– The	return	address?	



RPC	vs.	Procedure	Call	

Binding	
–  Client	needs	a	connection	to	server	
–  Server	must	implement	the	required	function	
–  What	if	the	server	is	running	a	different	version	

of	the	code?	
Performance	
–  		procedure	call:	maybe	10	cycles	=	~3	ns	
–  		RPC	in	data	center:	10	microseconds	=>	~1K	
slower	

–  		RPC	in	the	wide	area:	millions	of	times	slower	



RPC	vs.	Procedure	Call	

Failures	
– What	happens	if	messages	get	dropped?	
– What	if	client	crashes?	
– What	if	server	crashes?	
– What	if	server	crashes	after	performing	op	but	
before	replying?	

– What	if	server	appears	to	crash	but	is	slow?	
– What	if	network	partitions?	



Semantics	

•  Semantics	=	meaning	

•  reply	==	ok	=>	???	
•  reply	!=	ok	=>	???	



Semantics	

•  At	least	once	(NFS,	DNS,	lab	1b)	
–  true:	executed	at	least	once	
–  false:		maybe	executed,	maybe	multiple	times	

•  At	most	once	(lab	1c)	
–  true:	executed	once	
–  false:		maybe	executed,	but	never	more	than	once	

•  Exactly	once	
–  true:	executed	once	
–  false:	never	returns	false	



At	Least	Once	

RPC	library	waits	for	response	for	a	while	
If	none	arrives,	re-send	the	request	
Do	this	a	few	times	
Still	no	response	--	return	an	error	to	the	
application	



Non-replicated	key/value	server	

Client	sends	Put	k	v	
Server	gets	request,	but	network	drops	reply	
Client	sends	Put	k	v	again	
–  		should	server	respond	"yes"?	
–  		or	"no"?	

	
What	if	op	is	“append”?	
	



Does	TCP	Fix	This?	

•  TCP:	reliable	bi-directional	byte	stream	between	
two	endpoints	
–  Retransmission	of	lost	packets	
– Duplicate	detection	

•  But	what	if	TCP	times	out	and	client	reconnects?	
–  Browser	connects	to	Amazon	
–  RPC	to	purchase	book	
– Wifi	times	out	during	RPC	
–  Browser	reconnects	



When	does	at-least-once	work?	

•  If	no	side	effects	
–  read-only	operations	(or	idempotent	ops)	

•  Example:	MapReduce	
•  Example:	NFS	
–  readFileBlock	
– writeFileBlock	



At	Most	Once	

Client	includes	unique	ID	(UID)	with	each	request	
–  use	same	UID	for	re-send	

Server	RPC	code	detects	duplicate	requests	
–  return	previous	reply	instead	of	re-running	handler	
if	seen[uid]	{	
						r	=	old[uid]	
}	else	{	
						r	=	handler()	
						old[uid]	=	r	
						seen[uid]	=	true	
}	



Some	At-Most-Once	Issues	

How	do	we	ensure	UID	is	unique?	
–  Big	random	number?	
–  Combine	unique	client	ID	(IP	address?)	with	seq	#?	
–  What	if	client	crashes	and	restarts?		Can	it	reuse	the	

same	UID?	
–  In	labs,	nodes	never	restart	
–  Equivalent	to:	every	node	gets	new	ID	on	start	



When	Can	Server	to	Discard	Old	RPCs?	

Option	1:	
	Never?	

Option	2:	
						unique	client	IDs	
						per-client	RPC	sequence	numbers	
						client	includes	"seen	all	replies	<=	X"	with	every	RPC	
Option	3:	only	allow	client	one	outstanding	RPC	at	a	time	
						arrival	of	seq+1	allows	server	to	discard	all	<=	seq	
Labs	use	Option	3	
	



What	if	Server	Crashes?	

If	at-most-once	list	of	recent	RPC	results	is	
stored	in	memory,	server	will	forget	and	accept	
duplicate	requests	when	it	reboots	
–  Does	server	need	to	write	the	recent	RPC	results	

to	disk?	
–  If	replicated,	does	replica	also	need	to	store	

recent	RPC	results?	
In	Labs,	server	gets	new	address	on	restart	
–  	Client	messages	aren’t	delivered	to	restarted	
server	


