
5/25/18	

1	

Weakly	Consistent	and	
Disconnected	Operation	

Tom	Anderson	(h/t	Ray	Cheng)	

Why	Weak/Disconnected?	
File	synchronization	across	users	/	devices	

Dropbox,	metasync:	data	updated	continuously	

	
Source	code	control	

Git:	data	updated	locally,	explicit	merges	
	
Disconnected	/	intermittent	connectivity		

Laptop	and	mobile	apps,	3rd	world:	data	updated	
locally,	merged	when	connectivity	is	available	

Serializability	Recap	
Serializability:	everyone	sees	same	read/write	
order:	cache	coherence,	Paxos	
	
Release	consistency:	reads/writes	forced	to	
complete	at	memory	barriers,	lock/unlock	
	
Need	a	different	model	for	concurrent	updates	and	
disconnected	operation:	always	available	writes	

Background	Reading	

Terry	et	al.	(1995)
Managing	Update	Conflicts	in	Bayou,	a	Weakly	
Connected	Replicated	Storage	System	
	
Xerox	PARC	project	to	build	the	first	practical	PDAs	
	
Collaborative	apps	with	partial	connectivity	

Source	Code	Control	
●  Eventual	Consistency	

○  Read/write	local	copy	
○  Fix	conflicts	later	

●  Track	history	(with	metadata)	
●  Concurrent	editing	/	Many	
contributors	

●  Working	copy:	files	don’t	
change	beneath	you	
○  Push	/	Pull	to	server/peers	
○  Contributors	may	be	offline	/	
disconnected	



5/25/18	

2	

CVS	(1990)	
●  Client-server	model	

○  Check	out	working	copy	
○  Check	in	your	changes	

●  Server	arbitrates	order	
○  Only	accept	changes	to	the	
most	recent	version	

○  Developers	must	always	
keep	their	files	up	to	date	

Server	
	
file1:	
●  revision:	1.2	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.2	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.2	

	
file2:	
●  revision:	1.10	

checkout	

Server	
	
file1:	
●  revision:	1.3	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.3	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.2	

	
file2:	
●  revision:	1.10	

commit	
file1	r1.3	

Edit	file1	

Server	
	
file1:	
●  revision:	1.3	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.3	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.3	

	
file2:	
●  revision:	1.11	

Commit	file1	file2	
FAILS	

Edit	file1,	
file2	

Server	
	
file1:	
●  revision:	1.4	

	
file2:	
●  revision:	1.11	

Client	1	
	
file1:	
●  revision:	1.3	

	
file2:	
●  revision:	1.10	

Client	1	
	
file1:	
●  revision:	1.3	=>	

1.4	
file2:	
●  revision:	1.11	

update	file1	
r1.3	

Fix	file1	
conflicts	

commit	file1	file2	
SUCCEEDS	

CVS	Limitations	
●  Everyone	edits	the	same	repository	

○  How	does	a	subgroup	implement	a	complex	feature?	
●  No	local	version	control	

○  cvs	commit	~	git	commit	&&	git	push	
●  No	log/	time	travel	
●  No	versioning	of	moving	/	renaming	files	
●  Depends	on	live	server	to	operate	

○  Scaled	/	backed	up	/	reachable	
●  Branches	were	expensive	
●  Updates	not	atomic	(!)	



5/25/18	

3	

Apache	SVN	(2000)	
●  Improvements	

○  Atomic	commits	
○  Renamed	/	moved	/	copied	files	retain	version	
history	

○  Versioning	of	directories	and	metadata	
○  Cheap	branches	/	tagging	

●  Centralized	-	server/client	architecture	
●  Still	active	

○  All	of	Facebook’s	source	code	was	in	a	single	SVN	
repository	until	2014	

Commit	Log	

A:0	 A:1	 A:2	 A:3	 A:4	 A:5	

Branching	

A:0	 A:1	 A:2	 A:3	 A:4	 A:5	

B:1	 B:1	 B:1	

Merging	

A:0	 A:1	 A:2	 A:3	 A:4	 A:5	

B:1	 B:2	 B:3	

A:5	Ancestry	Set	
{A:	0-4,	B:1-3}	

Conflicting	updates	detected	with	vector	clocks	
What	then?	

	

Merge	Conflicts	
Easy:	create/delete/rename	different	files	in	
directory	=>	union	of	changes	
	
Medium:	changes	to	different	lines	of	text	file	=>	
diff+patch	
Change	to	file	that	has	been	renamed	=>	apply	
	
Hard:	changes	to	the	same	line	of	C	source	=>	ask	
user	to	fix	
	
Another	option:	operational	transforms	

Merging	and	Causal	Ordering	

	

Example:	
C1:	f=1	->	C2	
C2:																		f=2	->	C3	
C3:																																			f=3	->	C1	

	

	

Example:	
C1:	a=1	->	C2	
C2:	b=2	->	C3	
C3:	c=3	->	C1	

	

Operations	that	potentially	are	causally	related	
are	seen	by	every	node	of	the	system	in	the	same	
order	

	



5/25/18	

4	

Merging	

A:0	 A:1	 A:2	 A:3	 A:4	 A:5	

B:1	 B:2	 B:3	

A:6	

B:4	

A:6	Ancestry	Set	
{A:	0-5,	B:1-4}	
	
A:5	Ancestry	Set	
{A:	0-4,	B:	1-3}	
	
B:4	Ancestry	Set	
{B:	1-3}	

git	(2005)	
●  Distributed!	

○  Everyone	is	a	replica	
●  Consistency	and	performance	

○  Protects	from	memory,	disk	
corruption	

●  Cheap	branches	/	merges	
●  .git/	

○  Config	
○  Content-addressable	filesystem	
○  Log	of	changes	(commit	history)	

Logs	(Commit	Histories)	
●  Complete	log	of	changes	(needed	for	time	
travel	with	source	code	control)	
○  Directed	acyclic	graphs	(DAG)	

●  commit	
○  parents	
○  deltas	(changes	to	content)	
○  hash	-	for	consistency	
○  metadata		
	

	

	

Content	Addressable	Filesystem	
.git/objects	
	

	

	

Git	Example	

$ git init 
$ echo “version 1” > test.txt 
$ git add test.txt 
$ git commit -m “first commit” 
 
$ echo “version 2” > test.txt 
$ echo “new file” > new.txt 
$ git add ./ 
$ git commit -m “second commit” 
 
$ mkdir bak 
$ echo “version 1” > bak/test.txt 
$ git add bak/ 
$ git commit -m “third commit” 


