A Graphical Interactive Debugger for Distributed Systems

Doug Woos

March 23, 2018

1 Introduction

Developing correct distributed systems is difficult. Such systems are nondeterministic, since
the network can exhibit many different behaviors: behaviors—messages can be dropped or
arbitrarily delayed, and nodes can fail and restart. To a large degree, the behavior of the
network determines the behavior of a distributed program. What this means in practice is
that the "normal" case is much easier to test than the various failure cases: during debugging,
it is very likely that messages will be delivered in the order that they are sent and soon after
delivery. This means that programmers are unlikely to explore the unusual failure cases
in which bugs are likely to hide: for instance, a simplified reconfiguration protocol for the
Raft consensus algorithm [3] was discovered to have a bug in the case where two competing
reconfiguration requests and a leader failover all interleave. Traditional graphical debuggers,
which are designed for code running (perhaps in parallel) on a single machine, are of limited
utility in debugging such systems: they do not allow programmers to control which messages
will be delivered, and in what order.

DVIZ is a graphical, interactive debugger for distributed systems. It enables engineers to
explore and control the execution of their system, including both normal operation and edge
cases—message drops, node failures, and delays. DVIZ supports a general execution model:
event handlers, written in any programming language, run in response to received messages
or timeouts. Event handlers can in turn send messages to other nodes, set timeouts, and
modify their local state. DVIZ tracks which messages and timeouts are waiting to be deliv-
ered and allows the engineer to control the order. The system can also send state updates
to DVIZ so that it can accurately display a summary of each node’s current state. DVIZ
supports time-travel, allowing engineers to navigate a branching history of possible execu-
tions. This enables users to backtrack and make different choices about the order in which
messages and timeouts are delivered, allowing the exploration of many different cases—for
instance, all of the possible orderings of a few messages—in a single debugging session. By
enabling programmers to easily explore both normal cases and edge cases—indeed, in DVIZ,
no real distinction is made between these cases—DVIZ encourages them to think correctly
about distributed systems: rather than assuming the normal case and attaching failure han-
dling as an afterthought, systems must be developed around the possibility of failure and
then, if possible, optimize performance for common cases.

DVIZ differs from previous work in several ways. Unlike previous distributed systems
visualization systems, it can be used to visualize and control the network behavior of a real
system, developed in any programming language. Other systems only visualize the operation



Servers: 1,2,3]
Read

request E

a

request E 3 request : 2
E | E ‘1
| ° . °
(A)

Random next event = Reset Server Positions

.“' (C)

Figure 1: The debugger window. Each node (A) is displayed, along with an inbox (B) of
messages and timeouts waiting to be delivered at that node. The user can control delivery
by clicking on timeouts and messages, and can also inspect the contents of any message
or timeout or the state at any node. Using the branching history view (C), the user can
navigate the states of the system they have explored. The user can reset the debugger to
a previous state by clicking on it; this resets the system to that state so that the user can
explore further from there.

of a model, or logs of a particular execution. Similarly, previous debugging systems for
distributed systems focused on ex post facto debugging and diagnosis, while DVIZ is geared
toward interactive exploration of executions. DVIZ’s representation differs from the space-
time diagrams used in some previous work in that it is built to allow users to inspect a single
state of the system, including in-flight messages and timeouts, in detail while still enabling
navigation through an execution (support for traditional space-time diagrams in DVIZ is
left for future work).
DVIZ makes the following high-level contributions:

e Interactive debugging of distributed systems. DVIZ is the first system that allows



Table 1: The DVIZ API. In order to use DVIZ, users must implement a simple, JSON-based
message API. Once a system node registers with the server, it responds to each message
(including the start message, which is sent at the beginning of a debugging session and after
a reset) with its updated state, sent messages, and set and cleared timeouts.

Message Description From /To

register (name) Register a node Node to DVIZ
start Start the node DVIZ to node
timeout (type, body) Deliver a timeout DVIZ to node
message (from, type, body) Deliver a message DVIZ to node

response(state, messages, timeouts, cleared) Response to all events Node to DVIZ

users to interactively control the order of messages and timeouts that are delivered to
each node in a distributed system. DVIZ is designed to encourage and enable users to
reason about the correctness of their systems by exploring edge cases as well as normal
cases.

A conceptual model for distributed systems development. In DVIZ, all messages and
timeouts for a given node are grouped together in "inboxes," suggesting that any
event can occur at any node at any time, and that systems cannot assume a "normal"
ordering. DVIZ models history as a tree of possible executions, allowing programmers
to navigate multiple executions of their system and to explore the consequences of
various event orderings.

A novel graphical interface. DVIZ includes a new graphical representation (Figure
of the partial execution of a distributed system, designed to encourage users to
think carefully about the correctness of their systems. This interface allows users to
inspect a single state of the system in detail, while also enabling navigation through
an execution of the system.

These contributions are expanded below.

2 Contributions

2.1

Interactive debugging of distributed systems

2.1.1 Language-agnostic debugging API

DVIZ provides a simple API, shown in Figure [I] for systems to connect to the DVIZ de-
bugger. This API should be easily implementable in any language, allowing debugging of
arbitrary event-based systems. DVIZ currently only supports systems written as determin-
istic event-handlers, but we do not believe this is a fundamental limitation.

2.1.2 Log visualization

DVIZ can be started from an existing trace of events. This trace could be distilled from
production system logs, or produced by a model-checker as a counterexample to some desired



invariant. Visualizing such a trace does not require the system to implement DVIZ’s API,
but if it does, the user can explore this other alternative executions branching off the initial
trace.

2.2 The conceptual model
2.2.1 "Inboxes"

Inboxes contain both the messages and the timeouts waiting to be delivered (in any order)
to a node. We believe that this model emphasizes the asynchrony inherent in distributed
systems. Other systems model messages as traveling over time between one node and an-
other. In DVIZ, messages are immediately transferred to the receiver’s inbox and can then
be delayed for an arbitrary amount of time (or dropped), under user control. DVIZ’s display
encourages users to ignore wall-clock time in thinking about distributed systems correctness,
and instead think about correctness in the face of all possible event orders.

2.2.2 Branching history

The DVIZ debugger models history as a tree of possible executions. Programmers can travel
back in time and make different decisions about the network’s behavior. This allows users
to explore many possible executions of a system, including various interacting failure cases.

2.3 The graphical interface
2.3.1 System state inspection

DVIZ’s graphical interface is geared towards representing a single state of the system, in-
cluding in-flight messages and timeouts, in detail. Users can click to inspect server state or
the contents of messages and timeouts. Enabling detailed inspection is crucial for a debug-
ging interface, since users use this information to decide which message or timeout should
be delivered next.

2.3.2 Application-agnostic display

DVIZ’s display is application-agnostic; it can represent the state and execution history of
any distributed system conforming to DVIZ’s model (deterministic event handlers). It may
be interesting to allow developers to add application-specific interface components (such as
a graphical representation of a log for state-machine replication systems); we leave this for
future work.

3 Related Work

DVIZ builds on previous work in a few areas: distributed systems correctness, distributed
systems log exploration, and distributed systems visualization.



3.1 Correctness
3.1.1 TLA-+

TLA+ [I] is a system, based on Lamport’s Temporal Logic of Actions, for specifying and
reasoning about system models. TLA+ includes a bounded model-checker and a proof sys-
tem. As described in an Amazon report (Use of Formal Methods at Amazon Web Services),
TLA-+ is used in industry to model complex protocols and provide evidence that they are
correct.

Like TLA+, DVIZ can be used to gain confidence in the correctness of a system model.
Unlike TLA+, DVIZ models are executable and can be written in any language.

3.2 Log exploration
3.2.1 D3: Declarative Distributed Debugging

The D3 [2] system allows users to answer debugging queries (such as finding out which
sequence of events led to an error occurring) by processing system logs. D3 has a general
declarative language for specifying such queries, and is designed to scale to large systems by
parallelizing query processing across many nodes.

Like other prior work on debugging distributed systems, D3 is designed for ex post facto
debugging of a system running in production, based on log analysis. DVIZ is designed to
be used in real time during development.

3.2.2 ShiViz

Like D3, ShiViz is a system for ex post fact exploration of logs generated by production sys-
tems. It creates space-time diagrams corresponding to these logs, so that users can visually
investigate sources of errors and anomalies. It is not designed for real-time debugging.

3.3 Visualization
3.3.1 Runway

Runway is a system for visualizing models of distributed systems. It consists of a pro-
gramming language, similar to TLA, along with an interpreter for this language written
in Javascript and an API for extracting values from the interpreter for visualization. Sev-
eral models and animations have been developed using Runway, including one for the Raft
consensus protocol.

DVIZ’s visualization takes some inspiration from by those created in Runway—for in-
stance, as in Runway’s Raft visualization, nodes are represented as separate spatial entities
laid out in a circle. DVIZ is more general, however, and can be used for any distributed
system. Unlike Runway, DVIz does not require engineers to specify their systems in a
domain-specific language.



4 Conclusion and future work

DVIZ is the first interactive graphical debugger for distributed systems. IT allows users to
control the behavior of the network and observe the execution of the system, and enables
debugging multiple executions in order to explore normal- and edge-case behavior.

We have left a number of extensions to DVIZ for future work.

4.1 Space-time diagrams

DVIZ’s interface could be extended to include space-time diagrams, which are useful for
viewing a summary of a whole execution trace at once. This would only require changes
to the graphical interface, but would require some design decisions: how should in-flight
messages and timeouts be represented in a space-time diagram? How should users control
system execution from the diagram?

4.2 System model

DVIZ currently only supports deterministic event handlers; it could be extended to support
nondeterminism, or RPC-based systems with local multithreading. Supporting nondeter-
minism would require changes to the way DVIZ implements time-travel, since a replay of an
execution trace will not necessarily result in the same final state. Supporting RPC-based
systems would require a more complex interface between the debugger and the system. Any
use of real time by the system would have to go through the debugger, and it may be
necessary to represent local background threads as other nodes.

4.3 System-specific interface components

DVIZ could be extended to support system-specific components for visualizing parts of the
system state. For instance, the developer of a state-machine replication system might want
to display the log of commands seen at each node as an array of boxes colored by term,
while the developer of a ring maintenance system such as Chord might want to display
the successor and predecessor of each node as arrows to other nodes. This would involve
adding an API for systems to write elements to DVIZ’s SVG-based interface, and perhaps
developing a library of commonly-useful components (such as the arrows mentioned above).

4.4 Closer model-checker integration

DVIZ can currently be used to animate an execution trace produced as a counterexample
by a model-checker, but this integration could be more complete. For example, DVIZ could
highlight state components that violate the desired invariant. A model-checker could also be
used to provide DVIZ with "breakpoints." Since systems may have to do initial bootstrapping
that may be tedious to do manually in DVIZ (for instance, electing an initial leader) the
developer could specify that they want to debug the system starting in some state meeting
a global property (such as a successful election). DVIZ could ask the model-checker to find
such a state, and then allow the user to explore the system’s execution starting from the
state returned by the model-checker.



References

[1] L. Lamport, J. Matthews, M. Tuttle, and Y. Yu. Specifying and verifying systems with
tla+. In Proceedings of the 10th Workshop on ACM SIGOPS European Workshop, EW
10, pages 45-48, New York, NY, USA, 2002. ACM.

[2] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek, and
7. Zhang. D3S: debugging deployed distributed systems. In J. Crowcroft and M. Dahlin,
editors, 5th USENIX Symposium on Networked Systems Design & Implementation, NSDI
2008, April 16-18, 2008, San Francisco, CA, USA, Proceedings, pages 423-437. USENIX
Association, 2008.

[3] D. Ongaro and J. K. Ousterhout. In search of an understandable consensus algorithm.
In G. Gibson and N. Zeldovich, editors, 2014 USENIX Annual Technical Conference,
USENIX ATC 14, Philadelphia, PA, USA, June 19-20, 2014., pages 305-319. USENIX
Association, 2014.



	Introduction
	Contributions
	Interactive debugging of distributed systems
	Language-agnostic debugging API
	Log visualization

	The conceptual model
	"Inboxes"
	Branching history

	The graphical interface
	System state inspection
	Application-agnostic display


	Related Work
	Correctness
	TLA+

	Log exploration
	D3: Declarative Distributed Debugging
	ShiViz

	Visualization
	Runway


	Conclusion and future work
	Space-time diagrams
	System model
	System-specific interface components
	Closer model-checker integration


