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Transport	Clarification	

•  RPC	messages	can	be	arbitrary	size	
– Ex:	ok	to	send	a	tree	or	a	hash	table	
– Can	require	more	than	one	packet	sent/received	

•  We	assume	messages	can	be	dropped,	
duplicated,	reordered	
–  It	is	packets	that	are	dropped,	duplicated,	reordered	
– Most	RPCs	are	single	packets	

•  TCP	addresses	some	of	these	issues	
– But	we’ll	assume	the	general	case	



RPC	Semantics	

•  At	least	once	(NFS,	DNS,	lab	1b)	
–  true:	executed	at	least	once	
–  false:		maybe	executed,	maybe	multiple	times	

•  At	most	once	(lab	1c)	
–  true:	executed	once	
–  false:		maybe	executed,	but	never	more	than	once	

•  Exactly	once	
–  true:	executed	once	
–  false:	never	returns	false	



When	does	at-least-once	work?	

•  If	no	side	effects	
–  read-only	operations	(or	idempotent	ops)	

•  Example:	MapReduce	
•  Example:	NFS	
–  readFileBlock	(vs.	Posix	file	read)	
– writeFileBlock	
–  (but	not:	delete	file)	



At	Most	Once	

Client	includes	unique	ID	(UID)	with	each	request	
–  use	same	UID	for	re-send	

Server	RPC	code	detects	duplicate	requests	
–  return	previous	reply	instead	of	re-running	handler	
if	seen[uid]	{	
						r	=	old[uid]	
}	else	{	
						r	=	handler()	
						old[uid]	=	r	
						seen[uid]	=	true	
}	



Some	At-Most-Once	Issues	

How	do	we	ensure	UID	is	unique?	
–  Big	random	number?	
–  Combine	unique	client	ID	(IP	address?)	with	seq	#?	
–  What	if	client	crashes	and	restarts?		Can	it	reuse	the	

same	UID?	

•  In	labs,	nodes	never	restart	
–  Equivalent	to:	every	node	gets	new	ID	on	start	
–  Client	address	+	seq	#	is	unique	
–  Seq	#	alone	is	NOT	unique	



When	Can	Server	Discard	Old	RPCs?	

Option	1:	Never?	
Option	2:	unique	client	IDs	
–  per-client	RPC	sequence	numbers	
–  client	includes	"seen	all	replies	<=	X"	with	every	RPC	

Option	3:	one	client	RPC	at	a	time	
–  arrival	of	seq+1	allows	server	to	discard	all	<=	seq	

	
Labs	use	Option	3	
	



What	if	Server	Crashes?	

If	at-most-once	list	of	recent	RPC	results	is	stored	in	
memory,	server	will	forget	and	accept	duplicate	
requests	when	it	reboots	
–  Does	server	need	to	write	the	recent	RPC	results	to	

disk?	
–  If	replicated,	does	replica	also	need	to	store	recent	

RPC	results?	
In	Labs,	server	gets	new	address	on	restart	
–  Client	messages	aren’t	delivered	to	restarted	server	
–  (discard	if	sent	to	wrong	version	of	server)	



A	Data	Center	



Inside	a	Data	Center	



Data	center	

10k	-	100k	servers:	250k	–	10M	cores	

1-100PB	of	DRAM	

100PB	-	10EB	storage	

1-	10	Pbps	bandwidth	(>>	Internet)	

10-100MW	power	
-	1-2%	of	global	energy	consumption	

100s	of	millions	of	dollars	



Servers	

Limits	driven	by	the	power	consumption	

1-4	multicore	sockets		

20-24	cores/socket	(150W	each)	

100s	GB	–	1	TB	of	DRAM	(100-500W)	

40Gbps	link	to	network	switch	

	



Servers	in	racks	

19”	wide	

1.75”	tall	(1u)	

(defined	in	1922!)	

40-120	servers/rack	

network	switch	at	top	



Racks	in	rows	



Rows	in	hot/cold	pairs	



Hot/cold	pairs	in	data	centers	



Where	is	the	cloud?	

Amazon,	in	the	US:	
-	Northern	Virginia	

-	Ohio	

-	Oregon	

-	Northern	California	

Why	those	locations?	



MTTF/MTTR	

Mean	Time	to	Failure/Mean	Time	to	Repair	
	
Disk	failures	(not	reboots)	per	year	~	2-4%	
– At	data	center	scale,	that’s	about	2/hour.	
–  It	takes	10	hours	to	restore	a	10TB	disk	

Server	crashes	
– 1/month	*	30	seconds	to	reboot	=>	5	mins/year	
– 100K+	servers	



Typical	Year	in	a	Data	Center	(2008)	
•  ~0.5	overheating	(power	down	most	machines	in	
<5	mins,	~1-2	days	to	recover)	

•  ~1	PDU	failure	(~500-1000	machines	suddenly	
disappear,	~6	hours	to	come	back)	

•  ~1	rack-move	(plenty	of	warning,	~500-1000	
machines	powered	down,	~6	hours)	

•  ~1	network	rewiring	(rolling	~5%	of	machines	
down	over	2-day	span)	

•  ~20	rack	failures	(40-80	machines	instantly	
disappear,	1-6	hours	to	get	back)	



Typical	Year	in	a	Data	Center	(2008)	
•  ~5	racks	go	wonky	(40-80	machines	see	50%	
packetloss)	

•  ~8	network	maintenances	(4	might	cause	~30-minute	
random	connectivity	losses)	

•  ~12	router	reloads	(takes	out	DNS	and	external	vips	
for	a	couple	minutes)	

•  ~3	router	failures	(have	to	immediately	pull	traffic	for	
an	hour)	

•  ~dozens	of	minor	30-second	blips	for	dns	
•  ~1000	individual	machine	failures	
•  ~thousands	of	hard	drive	failures	
•  slow	disks,	bad	memory,	misconfigured	machines,	
flaky	machines,	etc	



This	Week:	Primary	Backup	

•  How	do	we	build	systems	that	survive	a	single	
node	failure?		

•  State	replication:	run	two	copies	of	server	
–  	primary,	backup	
–  	different	racks,	different	PDUs,	different	DCs!	
–  If	primary	fails,	backup	takes	over	

•  How	do	we	know	primary	failed	vs.	is	slow?	



Data	Center	Networks	

Every	server	wired	to	a	
ToR	(top	of	rack)	
switch	

ToR’s	in	neighboring	
aisles	wired	to	an	
aggregation	switch	

Agg.	switches	wired	to	
core	switches	



Early	data	center	networks	

3	layers	of	switches	
-	Edge	(ToR)	

-	Aggregation	

-	Core	



Early	data	center	networks	

3	layers	of	switches	
-	Edge	(ToR)	

-	Aggregation	

-	Core	
Optical	

Electrical	



Early	data	center	limitations	

Cost	
-	Core,	aggregation	routers	=	high	capacity,	low	volume	

-	Expensive!	

Fault-tolerance	
-	Failure	of	a	single	core	or	aggregation	router	=	large	

bandwidth	loss	

Bisection	bandwidth	limited	by	capacity	of	
largest	available	router	

-	Google’s	DC	traffic	doubles	every	year!	



Clos	networks	

How	can	I	replace	a	big	switch	by	many	small	
switches?	

	

	

	

	
Big	switch	

Small	
switch	



Clos	networks	
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Clos	Networks	

	

	

	

What	about	bigger	switches?	
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Multi-rooted	tree	

Every	pair	of	nodes	has	many	paths	

Fault	tolerant!	But	how	do	we	pick	a	path?	



Multipath	routing	

Lots	of	bandwidth,	split	across	many	paths	

ECMP:	hash	on	packet	header	to	determine	route	

	-	(5	tuple):	Source	IP,	port,	destination	IP,	port,	prot.	

	-	Packets	from	client	–	server	usually	take	same	route	

On	switch	or	link	failure,	ECMP	sends	subsequent	
packets	along	a	different	route	

=>	Out	of	order	packets!	



Data	Center	Network	Trends	

RT	latency	across	data	center	~	10	usec	
40	Gbps	links	common,	100	Gbps	on	the	way	
– 1KB	packet	every	80ns	on	a	100Gbps	link	
– Direct	delivery	into	the	on-chip	cache	(DDIO)	

Upper	levels	of	tree	are	(expensive)	optical	links	
– Thin	tree	to	reduce	costs	

Within	rack	>	within	aisle	>	within	DC	>	cross	DC	
– Latency	and	bandwidth:	keep	communication	local	



Local	Storage	

•  Magnetic	disks	for	long	term	storage	
– High	latency	(10ms),	low	bandwidth	(250MB/s)	
– Compressed	and	replicated	for	cost,	resilience	

•  Solid	state	storage	for	persistence,	cache	layer	
– 50us	block	access,	multi-GB/s	bandwidth	

•  Emerging	NVM	
– Low	energy	DRAM	replacement	
– Sub-microsecond	persistence	



Day	in	the	Life	of	a	Web	Request	

User	types	“google.com”,	what	happens	
DNS	=	Domain	Name	System	
– Global	database	of	name->IP	address	

DNS	query	to	root	name	server	
– Root	name	server	is	replicated	(600+)	
– Hard	coded	IP	multicast	addresses	
– Updates	happen	async	in	background	(rare)	

Root	returns:	IP	address	of	google’s	name	server	
–  Cached	on	client	(for	a	configurable	period)	
–  Can	be	out	of	date	



Name	Server	to	DC	

•  DNS	returns	google’s	name	server	
•  Google	name	server	returns	local	name	server	
– Name	server	in	DC	close	to	user’s	IP	address	

•  Local	name	server	returns	IP	of	web	front	end	
– Also	in	local	data	center	
– With	short	timeout,	reroute	if	front	end	failure	

•  Browser	sends	HTTP	request	to	front	end	



Resilient	Scalable	Web	Front	End		

•  IP	address	of	front	end	is	an	array	of	machines	
•  Packets	first	go	through	load	balancer	
– Actually,	an	array	of	load	balancers	(all	the	same)	

•  Load	balancer	hashes	3	or	5	tuple	->	front	end	
– Source	IP,	port	#,	Destination	IP,	port	#,	protocol	
– This	way,	all	traffic	from	user	goes	to	same	server	

•  When	front	end	fails,	load	balancer	redirects	
incoming	packets	elsewhere	



Challenge	

	
	
How	do	we	build	a	hash	function	that’s	stable?	
	
That	reroutes	only	the	packets	for	the	failed	
node,	leaving	the	packets	to	other	nodes	alone.	



Web	Front	End	->	Cache,	Storage	Layer	

Key-value	store	
Sharded	across	many	cache	and	storage	nodes	
	
Hash(key)	->	cache,	storage	node	
	
If	cache	node	fails,	rehash	to	new	cache	node	
If	storage	node	fails,	???	


