
Data	Centers	

Tom	Anderson	



Transport	Clarification	

•  RPC	messages	can	be	arbitrary	size	
– Ex:	ok	to	send	a	tree	or	a	hash	table	
– Can	require	more	than	one	packet	sent/received	

•  We	assume	messages	can	be	dropped,	
duplicated,	reordered	
–  It	is	packets	that	are	dropped,	duplicated,	reordered	
– Most	RPCs	are	single	packets	

•  TCP	addresses	some	of	these	issues	
– But	we’ll	assume	the	general	case	



RPC	Semantics	

•  At	least	once	(NFS,	DNS,	lab	1b)	
–  true:	executed	at	least	once	
–  false:		maybe	executed,	maybe	multiple	times	

•  At	most	once	(lab	1c)	
–  true:	executed	once	
–  false:		maybe	executed,	but	never	more	than	once	

•  Exactly	once	
–  true:	executed	once	
–  false:	never	returns	false	



When	does	at-least-once	work?	

•  If	no	side	effects	
–  read-only	operations	(or	idempotent	ops)	

•  Example:	MapReduce	
•  Example:	NFS	
–  readFileBlock	(vs.	Posix	file	read)	
– writeFileBlock	
–  (but	not:	delete	file)	



At	Most	Once	

Client	includes	unique	ID	(UID)	with	each	request	
–  use	same	UID	for	re-send	

Server	RPC	code	detects	duplicate	requests	
–  return	previous	reply	instead	of	re-running	handler	
if	seen[uid]	{	
						r	=	old[uid]	
}	else	{	
						r	=	handler()	
						old[uid]	=	r	
						seen[uid]	=	true	
}	



Some	At-Most-Once	Issues	

How	do	we	ensure	UID	is	unique?	
–  Big	random	number?	
–  Combine	unique	client	ID	(IP	address?)	with	seq	#?	
–  What	if	client	crashes	and	restarts?		Can	it	reuse	the	

same	UID?	

•  In	labs,	nodes	never	restart	
–  Equivalent	to:	every	node	gets	new	ID	on	start	
–  Client	address	+	seq	#	is	unique	
–  Seq	#	alone	is	NOT	unique	



When	Can	Server	Discard	Old	RPCs?	

Option	1:	Never?	
Option	2:	unique	client	IDs	
–  per-client	RPC	sequence	numbers	
–  client	includes	"seen	all	replies	<=	X"	with	every	RPC	

Option	3:	one	client	RPC	at	a	time	
–  arrival	of	seq+1	allows	server	to	discard	all	<=	seq	

	
Labs	use	Option	3	
	



What	if	Server	Crashes?	

If	at-most-once	list	of	recent	RPC	results	is	stored	in	
memory,	server	will	forget	and	accept	duplicate	
requests	when	it	reboots	
–  Does	server	need	to	write	the	recent	RPC	results	to	

disk?	
–  If	replicated,	does	replica	also	need	to	store	recent	

RPC	results?	
In	Labs,	server	gets	new	address	on	restart	
–  Client	messages	aren’t	delivered	to	restarted	server	
–  (discard	if	sent	to	wrong	version	of	server)	



A	Data	Center	



Inside	a	Data	Center	



Data	center	

10k	-	100k	servers:	250k	–	10M	cores	

1-100PB	of	DRAM	

100PB	-	10EB	storage	

1-	10	Pbps	bandwidth	(>>	Internet)	

10-100MW	power	
-	1-2%	of	global	energy	consumption	

100s	of	millions	of	dollars	



Servers	

Limits	driven	by	the	power	consumption	

1-4	multicore	sockets		

20-24	cores/socket	(150W	each)	

100s	GB	–	1	TB	of	DRAM	(100-500W)	

40Gbps	link	to	network	switch	

	



Servers	in	racks	

19”	wide	

1.75”	tall	(1u)	

(defined	in	1922!)	

40-120	servers/rack	

network	switch	at	top	



Racks	in	rows	



Rows	in	hot/cold	pairs	



Hot/cold	pairs	in	data	centers	



Where	is	the	cloud?	

Amazon,	in	the	US:	
-	Northern	Virginia	

-	Ohio	

-	Oregon	

-	Northern	California	

Why	those	locations?	



MTTF/MTTR	

Mean	Time	to	Failure/Mean	Time	to	Repair	
	
Disk	failures	(not	reboots)	per	year	~	2-4%	
– At	data	center	scale,	that’s	about	2/hour.	
–  It	takes	10	hours	to	restore	a	10TB	disk	

Server	crashes	
– 1/month	*	30	seconds	to	reboot	=>	5	mins/year	
– 100K+	servers	



Typical	Year	in	a	Data	Center	(2008)	
•  ~0.5	overheating	(power	down	most	machines	in	
<5	mins,	~1-2	days	to	recover)	

•  ~1	PDU	failure	(~500-1000	machines	suddenly	
disappear,	~6	hours	to	come	back)	

•  ~1	rack-move	(plenty	of	warning,	~500-1000	
machines	powered	down,	~6	hours)	

•  ~1	network	rewiring	(rolling	~5%	of	machines	
down	over	2-day	span)	

•  ~20	rack	failures	(40-80	machines	instantly	
disappear,	1-6	hours	to	get	back)	



Typical	Year	in	a	Data	Center	(2008)	
•  ~5	racks	go	wonky	(40-80	machines	see	50%	
packetloss)	

•  ~8	network	maintenances	(4	might	cause	~30-minute	
random	connectivity	losses)	

•  ~12	router	reloads	(takes	out	DNS	and	external	vips	
for	a	couple	minutes)	

•  ~3	router	failures	(have	to	immediately	pull	traffic	for	
an	hour)	

•  ~dozens	of	minor	30-second	blips	for	dns	
•  ~1000	individual	machine	failures	
•  ~thousands	of	hard	drive	failures	
•  slow	disks,	bad	memory,	misconfigured	machines,	
flaky	machines,	etc	



This	Week:	Primary	Backup	

•  How	do	we	build	systems	that	survive	a	single	
node	failure?		

•  State	replication:	run	two	copies	of	server	
–  	primary,	backup	
–  	different	racks,	different	PDUs,	different	DCs!	
–  If	primary	fails,	backup	takes	over	

•  How	do	we	know	primary	failed	vs.	is	slow?	



Data	Center	Networks	

Every	server	wired	to	a	
ToR	(top	of	rack)	
switch	

ToR’s	in	neighboring	
aisles	wired	to	an	
aggregation	switch	

Agg.	switches	wired	to	
core	switches	



Early	data	center	networks	

3	layers	of	switches	
-	Edge	(ToR)	

-	Aggregation	

-	Core	



Early	data	center	networks	

3	layers	of	switches	
-	Edge	(ToR)	

-	Aggregation	

-	Core	
Optical	

Electrical	



Early	data	center	limitations	

Cost	
-	Core,	aggregation	routers	=	high	capacity,	low	volume	

-	Expensive!	

Fault-tolerance	
-	Failure	of	a	single	core	or	aggregation	router	=	large	

bandwidth	loss	

Bisection	bandwidth	limited	by	capacity	of	
largest	available	router	

-	Google’s	DC	traffic	doubles	every	year!	



Clos	networks	

How	can	I	replace	a	big	switch	by	many	small	
switches?	

	

	

	

	
Big	switch	

Small	
switch	



Clos	networks	

How	can	I	replace	a	big	switch	by	many	small	
switches?	

	

	

	

	
Big	switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	



Clos	Networks	

	

	

	

What	about	bigger	switches?	



Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	



Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	

Small	
switch	



Multi-rooted	tree	

Every	pair	of	nodes	has	many	paths	

Fault	tolerant!	But	how	do	we	pick	a	path?	



Multipath	routing	

Lots	of	bandwidth,	split	across	many	paths	

ECMP:	hash	on	packet	header	to	determine	route	

	-	(5	tuple):	Source	IP,	port,	destination	IP,	port,	prot.	

	-	Packets	from	client	–	server	usually	take	same	route	

On	switch	or	link	failure,	ECMP	sends	subsequent	
packets	along	a	different	route	

=>	Out	of	order	packets!	



Data	Center	Network	Trends	

RT	latency	across	data	center	~	10	usec	
40	Gbps	links	common,	100	Gbps	on	the	way	
– 1KB	packet	every	80ns	on	a	100Gbps	link	
– Direct	delivery	into	the	on-chip	cache	(DDIO)	

Upper	levels	of	tree	are	(expensive)	optical	links	
– Thin	tree	to	reduce	costs	

Within	rack	>	within	aisle	>	within	DC	>	cross	DC	
– Latency	and	bandwidth:	keep	communication	local	



Local	Storage	

•  Magnetic	disks	for	long	term	storage	
– High	latency	(10ms),	low	bandwidth	(250MB/s)	
– Compressed	and	replicated	for	cost,	resilience	

•  Solid	state	storage	for	persistence,	cache	layer	
– 50us	block	access,	multi-GB/s	bandwidth	

•  Emerging	NVM	
– Low	energy	DRAM	replacement	
– Sub-microsecond	persistence	



Day	in	the	Life	of	a	Web	Request	

User	types	“google.com”,	what	happens	
DNS	=	Domain	Name	System	
– Global	database	of	name->IP	address	

DNS	query	to	root	name	server	
– Root	name	server	is	replicated	(600+)	
– Hard	coded	IP	multicast	addresses	
– Updates	happen	async	in	background	(rare)	

Root	returns:	IP	address	of	google’s	name	server	
–  Cached	on	client	(for	a	configurable	period)	
–  Can	be	out	of	date	



Name	Server	to	DC	

•  DNS	returns	google’s	name	server	
•  Google	name	server	returns	local	name	server	
– Name	server	in	DC	close	to	user’s	IP	address	

•  Local	name	server	returns	IP	of	web	front	end	
– Also	in	local	data	center	
– With	short	timeout,	reroute	if	front	end	failure	

•  Browser	sends	HTTP	request	to	front	end	



Resilient	Scalable	Web	Front	End		

•  IP	address	of	front	end	is	an	array	of	machines	
•  Packets	first	go	through	load	balancer	
– Actually,	an	array	of	load	balancers	(all	the	same)	

•  Load	balancer	hashes	3	or	5	tuple	->	front	end	
– Source	IP,	port	#,	Destination	IP,	port	#,	protocol	
– This	way,	all	traffic	from	user	goes	to	same	server	

•  When	front	end	fails,	load	balancer	redirects	
incoming	packets	elsewhere	



Challenge	

	
	
How	do	we	build	a	hash	function	that’s	stable?	
	
That	reroutes	only	the	packets	for	the	failed	
node,	leaving	the	packets	to	other	nodes	alone.	



Web	Front	End	->	Cache,	Storage	Layer	

Key-value	store	
Sharded	across	many	cache	and	storage	nodes	
	
Hash(key)	->	cache,	storage	node	
	
If	cache	node	fails,	rehash	to	new	cache	node	
If	storage	node	fails,	???	


