
Yegge on SOA
Tom Anderson and Doug Woos

Yegge

Google (other large software companies) should use 
SOA as a software architecture and engineering 
discipline.

SOA at Amazon: Bezos’s rules

All teams must expose data/functionality through 
service interfaces 

Teams communicate through these interfaces 

No other communication (e.g. direct linking, shared 
FS, etc.) allowed—only calls over network 

Service interfaces must be externalizable—designed 
to be exposed to the outside world

SOA at Amazon: Implementation

Decompose website into 1000s of primitive services 

Each team runs its service as a standalone product 

- Including ops! 

Each service provides a service level agreement to its 
clients (i.e. other teams’ services)

Service level agreements

Guarantee provided to clients re: service response 
time and availability 

- ex: Availability = 5 9s (99.999% uptime) 

- ex: Response time = 3ms @ 90th percentile 

- SLA is also a guarantee from the client, e.g., won’t 
send more than X reqs/s

Meanwhile, at Google*

Fewer services 

Culture encourages reuse via linking 

- Monolithic codebase 
- Libraries carefully maintained 

Operations separate from development 

Capacity centrally planned 

- clients assumed to be well-behaved

* then! maybe!



Why SOA?
Internal reasons 

- Resilient to buggy components 

- Forces excellent monitoring 

- Can scale services independently 

Big external reason 

- Companies need to build platforms 
- Platforms require good external APIs 

- Separate external/internal interfaces = bad APIs 

- Need to eat your own dog food!

SOA lessons
Pager escalation 

The core problem might not be the responsibility of 
the team whose on-call members get woken up in 
the middle of the night! 

Need automated service registry 

Every client is potential source of DoS 
Including amplification attacks! 

Only way to tell if a service is functioning is to use it 
Testing = monitoring 

Cross-service debugging—need universal sandbox

Why Yegge was worried

In order to be usable (/accessible), applications need 
to be platforms 

Must design for SOA from scratch 

- Can’t bolt it on

What about upgrades?

SOA makes it harder to make backwards-incompatible 
changes 

- Both an advantage and a disadvantage! 

- At Google: monolithic codebase, change 
everyone’s API usage 

Formalize API versioning, deprecation 

- Some teams will upgrade early, others late

Discussion

In your experience, is SOA helpful? 

Are there challenges in implementing SOA that Yegge 
didn’t address? 

Next few papers
Facebook Memcache 

Three real-world systems from Google 

GFS: storage for bulk data 

BigTable: storage for structured data 
Chubby: coordination service 

All four highly influential 

GFS -> HDFS 

BigTable -> HBase, Cassandra, other NoSQL stores 

Chubby -> Zookeeper, etcd




