
Dynamo
Tom Anderson and Doug Woos

Dynamo motivation

Fast, available writes

- Shopping cart: always enable purchases

FLP: consistency and progress at odds

- Paxos: must communicate with a quorum

Performance: strict consistency = “single” copy

- Updates serialized to single copy

- Or, single copy moves

Why Fast Available Writes?

Amazon study: 100ms increase in response time

=> 5% reduction in revenue

Similar results at other ecommerce sites

99.99% availability

=> less than an hour outage/year (total)

Amazon revenue > $300K/minute

Dynamo motivation

Dynamo goals

- Expose “as much consistency as possible”

- Good latency, 99.9% of the time

- Easy scalability

Dynamo consistency

Eventual consistency

- Can have stale reads

- Can have multiple “latest” versions

- Reads can return multiple values

Not sequentially consistent

- Can’t “defriend and dis”

External interface
get : key -> ([value], context)

- Exposes inconsistency: can return multiple values

- context is opaque to user (set of vector clocks)

put : (key, value, context) -> void

- Caller passes context from previous get

Example: add to cart

 (carts, context) = get(“cart-“ + uid)  
 cart = merge(carts)  
 cart = add(cart, item)  
 put(“cart-“ + uid, cart, context)

Resolving conflicts in application

Applications can choose how to handle inconsistency:

- Shopping cart: take union of cart versions

- User sessions: take most recent session

- High score list: take maximum score

Default: highest timestamp wins

Context used to record causal relationships between
gets and puts

- Once inconsistency resolved, should stay resolved

- Implemented using vector clocks

Dynamo’s vector clocks

Each object associated with a vector clock

- e.g., [(node1, 0), (node2, 1)]

Each write has a coordinator, and is replicated to
multiple other nodes

- In an eventually consistent manner

Nodes in vector clock are coordinators

Dynamo’s vector clocks

Client sends clock with put (as context)

Coordinator increments its own index in clock, then
replicates across nodes

Nodes keep objects with conflicting vector clocks

- These are then returned on subsequent gets

If clock(v1) < clock(v2), node deletes v1

Dynamo Vector Clocks

Vector clock returned as context with get

- Merge of all returned objects’ clocks

Used to detect inconsistencies on write

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

get()

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

[1], [(node1, 0)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

put(“2”, [(node1, 0)])

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]

node1

node2

node3

client

“1” @ [(node1, 0)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]
OK

node1

node2

node3

client

“2” @ [(node1, 1)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“1” @ [(node1, 0)]

“2” @ [(node1, 1)]

put(“3”, [(node1, 0)])

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]
OK

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

get()

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

[“2”, “3”], [(node1, 1), (node3, 0)]

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

[“2”, “3”], [(node1, 1), (node3, 0)]

client must now
run merge!

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

put(“3”, [(node1, 1), (node3, 0)])

node1

node2

node3

client

“2” @ [(node1, 1)]

“3” @ [(node1, 0), (node3, 0)]

“3” @ [(node1, 2), (node3, 0)]

“3” @ [(node1, 0), (node3, 0)]

node1

node2

node3

client

“3” @ [(node1, 2), (node3, 0)]

“3” @ [(node1, 0), (node3, 0)]

“3” @ [(node1, 2), (node3, 0)]

node1

node2

node3

client

“3” @ [(node1, 2), (node3, 0)]

“3” @ [(node1, 0), (node3, 0)]

“3” @ [(node1, 2), (node3, 0)]

node1

node2

node3

client

“3” @ [(node1, 2), (node3, 0)]

“3” @ [(node1, 2), (node3, 0)]

“3” @ [(node1, 2), (node3, 0)]

Where does each key live?

Goals:

- Balance load, even as servers join and leave

- Replicate across data centers

- Encourage put/get to see each other

- Avoid conflicting versions

Solution: consistent hashing

Recap: consistent hashing

Node ids hashed to many pseudorandom points on a
circle

Keys hashed onto circle, assigned to “next” node

Idea used widely:

- Developed for Akamai CDN

- Used in Chord distributed hash table

- Used in Dynamo distributed DB

Consistent hashingCache 1

Cache 2

Cache 3

Consistent hashing in Dynamo
Each key has a “preference list”—next nodes around
the circle

- Skip duplicate virtual nodes

- Ensure list spans data centers
Slightly more complex:

- Dynamo ensures keys evenly distributed

- Nodes choose “tokens” (positions in ring) when
joining the system

- Tokens used to route requests

- Each token = equal fraction of the keyspace

Replication in Dynamo

Three parameters: N, R, W

- N: number of nodes each key replicated on

- R: number of nodes participating in each read

- W: number of nodes participating in each write

Data replicated onto first N live nodes in pref list

- But respond to the client after contacting W

Reads see values from R nodes

Common config: (3, 2, 2)

Sloppy quorum
Never block waiting for unreachable nodes

- Try next node in list!

Want get to see most recent put (as often as possible)

Quorum: R + W > N

- Don’t wait for all N

- R and W will (usually) overlap

Nodes ping each other

- Each has independent opinion of up/down

“Sloppy” quorum—nodes can disagree about which
nodes are running

Replication in Dynamo

Coordinator (or client) sends each request (put or get)
to first N reachable nodes in pref list

- Wait for R replies (for read) or W replies (for write)

Normal operation: gets see all recent versions

Failures/delays:

- Writes still complete quickly

- Reads eventually see

Ensuring eventual consistency

What if puts end up far away from first N?

- Could happen if some nodes temporarily
unreachable

- Server remembers “hint” about proper location

- Once reachability restored, forwards data

Nodes periodically sync whole DB

- Fast comparisons using Merkle trees

Dynamo deployments

~100 nodes each

One for each service (parameters global)

How to extend to multiple apps?

Different apps use different (N, R, W)

- Pretty fast, pretty durable: (3, 2, 2)

- Many reads, few writes: (3, 1, 3) or (N, 1, N)

- (3, 3, 3)?

- (3, 1, 1)?

Dynamo results

Average much faster than 99.9%

- But, 99.9% acceptable

Inconsistencies rare in practice

- Allow inconsistency, but minimize it

Dynamo Revisited

Implemented as a library, not as a service

- Each service (eg shopping cart) instantiated a
Dynamo instance

When an inconsistency happens:

- Is it a problem in Dynamo?

- Is it an intended side effect of Dynamo’s design?

Every service runs its own ops => every service needs
to be an expert at sloppy quorum

Dynamo DB

Replaced Dynamo the library with DynamoDB the
service

DynamoDB: strictly consistent key value store

- validated with TLA and model checking

- eventually consistent as an option

- (afaik) no multikey transactions?

Dynamo is eventually consistent

Amazon is eventually strictly consistent!

Discussion

Why is symmetry valuable? Do seeds break it?

Dynamo and SOA

- What about malicious/buggy clients?

Issues with hot keys?

Transactions and strict consistency

- Why were transactions implemented at Google
and not at Amazon?

- Do Amazon’s programmers not want strict
consistency?

