
Consistent Hashing
Tom Anderson and Doug Woos

Scaling Paxos: Shards

We can use Paxos to decide on the order of operations,
e.g., to a key-value store

- all-to-all communication among servers on each op

What if we want to scale to more clients?

Sharding: assign a subset of keys to each Paxos group

Recall: linearizable if

- clients do their operations in order (if needed)

- servers linearize each key

State
machine

Paxos

Replicated, Sharded Database

State
machine

State
machine

Paxos

State
machine

Paxos

State
machine

Paxos

Replicated, Sharded Database

State
machine

State
machine

Paxos

State
machine

Paxos

Which keys are where?

State
machine

Paxos

Lab 4 (and other systems)

State
machine

State
machine

Paxos

State
machine

Paxos

Paxos

Shard master

Replicated, Sharded Database

Shard master decides

- which Paxos group has which keys

Shards operate independently

How do clients know who has what keys?

- Ask shard master? Becomes the bottleneck!

Avoid shard master communication if possible

- Can clients predict which group has which keys

Recurring Problem

Client needs to access some resource

Sharded for scalability

How does client find specific server to use?

Central redirection won’t scale!

Another scenario

Client

Another scenario

Client

GET index.html

Another scenario

Client

index.html

Another scenario

Client

index.html
Links to: logo.jpg, jquery.js, …

Another scenario

Client

Cache 1 Cache 2 Cache 3

GET logo.jpg GET jquery.js

Another scenario

Client 2

Cache 1 Cache 2 Cache 3

GET logo.jpg GET jquery.js

Other Examples

Scalable shopping cart service

Scalable email service

Scalable cache layer (Memcache)

Scalable network path allocation

Scalable network function virtualization (NFV)

…

What’s in common?

Want to assign keys to servers w/o communication

Requirement 1: clients all have same assignment

Proposal 1

For n nodes, a key k goes to k mod n

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”

Proposal 1

For n nodes, a key k goes to k mod n

Problems with this approach?

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”

Proposal 1

For n nodes, a key k goes to k mod n

Problems with this approach?

- Likely to have distribution issues

Cache 1 Cache 2 Cache 3

“a”, “d”, “ab” “b” “c”

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

Cache 1 Cache 2 Cache 3

h(“a”)=1 h(“abc”)=2 h(“b”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

Cache 1 Cache 2 Cache 3

h(“a”)=1 h(“abc”)=2 h(“b”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

Cache 1 Cache 2 Cache 3

h(“a”)=1 h(“abc”)=2 h(“b”)=3

Cache 4

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

Cache 1 Cache 2 Cache 3

h(“a”)=1h(“abc”)=2 h(“b”)=3

Cache 4

h(“a”)=3 h(“b”)=4 h(“b”)=4h(“a”)=3

Proposal 2: Hashing

For n nodes, a key k goes to hash(k) mod n

Hash distributes keys uniformly

But, new problem: what if we add a node?

- Redistribute a lot of keys! (on average, all but K/n)

Cache 1 Cache 2 Cache 3

h(“abc”)=2

Cache 4

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys uniformly distributed

Requirement 3: can add/remove nodes w/o
redistributing too many keys

First, hash the node ids

Proposal 3: Consistent Hashing

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2)

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

First, hash the node ids

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“a”

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“a”

hash(“a”)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“a”

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“b”

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“b”

hash(“b”)

First, hash the node ids

Keys are hashed, go to the “next” node

Proposal 3: Consistent Hashing

Cache 1 Cache 2 Cache 3

0 232hash(1)hash(2) hash(3)

“b”

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

What if we add a node?

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4
Only “b” has to move!

On average, K/n keys move

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4

Proposal 3: Consistent Hashing

Cache 1
Cache 2

Cache 3

“a”

“b”

Cache 4
Only “b” has to move!

On average, K/n keys move
but all between two nodes

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys evenly distributed

Requirement 3: can add/remove nodes w/o
redistributing too many keys

Requirement 4: parcel out work of redistributing keys

First, hash the node ids to multiple locations

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 232

First, hash the node ids to multiple locations

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 1

First, hash the node ids to multiple locations

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 12 2 2 2 2

First, hash the node ids to multiple locations

As it turns out, hash functions come in families s.t. their
members are independent. So this is easy!

Proposal 4: Virtual Nodes

Cache 1 Cache 2 Cache 3

0 2321 1 1 1 12 2 2 2 2

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3

Prop 4: Virtual NodesCache 1

Cache 2

Cache 3 Keys more evenly
distributed and

migration is evenly
spread out.

Requirements, revisited

Requirement 1: clients all have same assignment

Requirement 2: keys evenly distributed

Requirement 3: can add/remove nodes w/o
redistributing too many keys

Requirement 4: parcel out work of redistributing keys

Load Balancing At Scale

Suppose you have N servers

Using consistent hashing with virtual nodes:

- heaviest server has x% more load than the average

- lightest server has x% less load than the average

What is peak load of the system?

- N * load of average machine? No!

Need to minimize x

Key	Popularity

• What	if	some	keys	are	more	popular	than	others	
• Consistent	hashing	is	no	longer	load	balanced!	
• One	model	for	popularity	is	the	Zipf	distribution	
• Popularity	of	kth	most	popular	item,	1	<	c	<	2	
• 1/k^c	

• Ex:	1,	1/2,	1/3,	…	1/100	…	1/1000	…	1/10000

Zipf	“Heavy	Tail”	Distribution Zipf	Examples

• Web	pages	
• Movies	
• Library	books	
• Words	in	text	
• Salaries	
• City	population	
• Twitter	followers	
• …	
Whenever	popularity	is	self-reinforcing

Proposal 5: Table Indirection

Consistent hashing is (mostly) stateless

- Given list of servers and # of virtual nodes, client can
locate key

- Worst case unbalanced, especially with zipf

Add a small table on each client

- Table maps: virtual node -> server

- Shard master reassigns table entries to balance load

Recap: consistent hashing

Node ids hashed to many pseudorandom points on a
circle

Keys hashed onto circle, assigned to “next” node

Idea used widely:

- Developed for Akamai CDN

- Used in Chord distributed hash table

- Used in Dynamo distributed DB

Next Week

Start of 3 weeks on “distributed systems in practice”

Lots of papers and discussion

Friday/Monday

Yegge on Service-Oriented Architectures

- Steve Yegge, prolific programmer and blogger

- Moved from Amazon to Google

- Monday’s reading is an accidentally-leaked memo
about differences between Amazon’s and Google’s
system architectures (at that time)

- Advocates for SOA: separating applications (e.g.
Google Search, Amazon) into many primitive
services, run internally as products

