
Lamport Clocks
Tom Anderson + Doug Woos

Logistics notes

Problem Set 1 out Monday

Will be due a week from Monday

Today

Primary Backup Wrap-up

Lamport Clocks

- Motivation

- Basic idea

- Mutual exclusion

- State machine replication

Vector clocks

Primary Backup: Why its hard

Primary may fail

Backup may fail

Communication may fail partially or temporarily

Participants may lag decisions made at:

- viewserver (has view changed?)

- primary (did it fail? reply to client message?)

- backup (did it fail? has it learned of new view? has
state transfer completed?)

Lab 2 Rules

1. Primary in view i+1 must have been backup or
primary in view i

2. Primary must wait for backup to accept/execute
each op before doing op and replying to client

3. Backup must accept forwarded requests only if
view is correct

4. Non-primary must reject client requests

5. Every operation must be before or after state
transfer

Lab 2 Rules

1. Primary in view i+1 must have been backup or
primary in view i

2. Primary must wait for backup to accept/execute
each op before doing op and replying to client

3. Backup must accept forwarded requests only if
view is correct

4. Non-primary must reject client requests

5. Every operation must be before or after state
transfer

Why Atomic State Transfer?

Until new backup is up to date, there is a window of
vulnerability

- if new primary crashes, lose state

This is why we need to do the backup quickly

- simpler to implement if no concurrent ops

But why must we do it atomically?

Why Atomic State Transfer?

1:A,B

// A is new primary, B is new backup

A starts sending state to B
Client sends op to A // modifies state not yet sent to B
A forwards op to B
B applies op
A sends rest of state to B // overwrites op
A applies op
// A and B are inconsistent

One more corner case

1:A,B
View server stops hearing from A
A and B, and clients, can still communicate

2:B,C

B hasn’t heard from view server
Client in view 1 sends a request to A
What should happen?
Client in view 2 sends a request to B
What should happen?

Primary Backup Questions

What state to replicate?

How does the backup get state?

Apply changes to backup, or just log?

When do we cut over to the backup?

Are anomalies visible at the cut over?

How do we repair/re-integrate?

Replicated Virtual Machines

Whole system replication

Completely transparent to applications and clients

High availability for any existing software

Challenge: Need state at backup to exactly mirror
primary

Restricted to a uniprocessor VMs

Deterministic Replay

Key idea: state of VM depends only on its input

- Content of all input/output

- Precise instruction of every interrupt

- Only a few exceptions (e.g., timestamp instruction)

Record all hardware events into a log

- Modern processors have instruction counters and
can interrupt after (precisely) x instructions

- Trap and emulate any non-deterministic instructions

Replicated Virtual Machines
Replay I/O, interrupts, etc. at the backup

- Backup executes events at primary with a lag

- Backup stalls until it knows timing of next event

- Backup does not perform external events

Primary stalls until it knows backup has copy of every
event up to (and incl.) output event

- Then it is safe to perform output

On failure, inputs/outputs will be replayed at backup
(idempotent)

Example
Primary receives network interrupt

hypervisor forwards interrupt plus data to backup

hypervisor delivers network interrupt to OS kernel

OS kernel runs, kernel delivers packet to server

server/kernel write response to network card

hypervisor gets control and sends response to backup

hypervisor delays sending response to client until backup asks

Backup receives log entries

backup delivers network interrupt

…

hypervisor does *not* put response on the wire

hypervisor ignores local clock interrupts

Questions

Why send output events to backup and delay output
at primary until backup has acked?

What happens when primary fails after receiving
network input but before sending log entry to backup?

Can the same output be produced twice?

Lamport Clocks

Framework for reasoning about event ordering

- notion of logical time vs. physical time

- causal ordering and vector clocks (e.g., git)

- state machine replication

A Few Examples

Primary backup

Consistency in distributed make

Update ordering on social media

Merging distributed event logs

Replication w/ Event Ordering
Suppose we had a globally valid way to assign
timestamps to events

Clients label ops with timestamp

Send ops directly to both primary and backup

Primary and backup apply events in timestamp order

Client safe when get ack from both

Viewserver still needed for failover, split-brain, etc.

- In new view, client asks: did this event happen?

Distributed Make

Distributed file servers hold source and object files

Clients update files (with modification times)

Make uses timestamps to decide what must be rebuilt

- If object O depends on source S

and O.time < S.time, rebuild O

Depends on correctness of timestamp; what can go
wrong?

Update Ordering

Silently block boss on twitter

Tweet: “My boss is the worst, I need a new job!”

Tweets and block/mute lists sharded across many
servers

Copies on many replicas, caches, across data centers

How do you guarantee that no read sees the updates
in the wrong order?

Example: Merging Event Logs

You have a large, complex distributed system

Sometimes, things go wrong—bugs, bad client
behavior, etc.

You want to be able to debug!

So, each node produces a (partial) event log

Example: Merging Event Logs

Node 1

Node 2

Node 3

1. Sent Put to 2
2. Received Get from client
3. Received PutReply from 2
4. Did some stuff
5. Sent GetReply

1.Received Put from 1
2.…

1.Sent Get to 2
2.…

Centralize the log?

Events will be ordered at the logger

Expensive! More scalable to keep local logs

Might not represent order of events as they happened
at each node!

Physical Clocks

Label each event with its physical time

- How closely can we approximate physical time?

Building blocks

- Server clock oscillator skews at 2s/month

- Atomic clock: ns accuracy, expensive

- GPS: 10ns accuracy, requires antenna

- Network packets with variable network latency,
scheduling delay

Physical Clocks: Beacon

Designate server with GPS/atomic clock as the master

Master periodically broadcasts time

Clients receive broadcast, reset their clock

- Taking care so time never runs backwards

How well does this work?

Network Latency

Network latency is unpredictable with a lower bound

Client Driven Approach: NTP, PTP

Client queries server
Time = server’s clock - 1/2 round trip

Average over several servers; throw out outliers

In between queries, adjust for measured clock skew

Time Accuracy in Practice (ms)

Spanner Time Accuracy

Google put multiple GPS/atomic clocks in every data
center, for a system called Spanner

- Prioritize time traffic to reduce network jitter

- Accuracy = Interval between pings * 200usec/sec

Event resolution needed to rely on physical clocks:

 5ns = minimum packet on 100Gbps link

100ns = minimum packet latency (intra-rack)

Fine-Grained Physical Clocks

Timestamps taken in hardware on the network interface

Eliminate samples that involve any network queueing

Continually re-estimate clock skew

- Skew is temperature dependent

Connect all servers in data center into a mesh

- average all neighbors (mostly short hops)

Accuracy ~ 100ns in the worst case

Logical Clocks

Way to assign timestamps to events

- Globally valid, such that it respects causality

- Using only local information

- No physical clock

What does it mean for a to happen before b?

Happens-before

1. Happens earlier at same location

2. Transmission before receipt

3. Transitivity

Example

S1 S2 S3

A

B

send M

recv M

C
send M’

recv M’
D

E

Goal of a logical clock

happens-before(A, B) -> T(A) < T(B)

What about the converse?

Logical clock implementation

Keep a local clock T

Increment T whenever an event happens

Send clock value on all messages as Tm

On message receipt: T = max(T, Tm) + 1

Example

S1 S2 S3

A (T = ?)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = ?)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = 1)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = 7)

Mutual exclusion

Use clocks to implement a lock

- Using state machine replication

Goals:

- Only one process has the lock at a time

- Requesting processes eventually acquire the lock

Assumptions:

- In-order point-to-point message delivery

- No failures

Mutual exclusion implementation

Each message carries a timestamp Tm (and a seq #)

Three message types:

- request (broadcast)

- release (broadcast)

- acknowledge (on receipt)

Each node’s state:

- A queue of request messages, ordered by Tm

- The latest message it has received from each node

Mutual exclusion implementation

On receiving a request:

- Record message timestamp

- Add request to queue

On receiving a release:

- Record message timestamp

- Remove corresponding request from queue

On receiving an acknowledge:

- Record message timestamp

Mutual exclusion implementation

To acquire the lock:

- Send request to everyone, including self

- The lock is acquired when:

- My request is at the head of my queue, and

- I’ve received higher-timestamped messages
from everyone

- So my request must be the earliest

S1

S2

S3

Timestamp: 0
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

S1

S2

S3

Timestamp: 1
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

request@1 request@1

S1

S2

S3

Timestamp:1
Queue: [S1@0; S2@1]
S1max: 0
S3max: 0

Timestamp: 2
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 2
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

S1

S2

S3

Timestamp:1
Queue: [S1@0; S2@1]
S1max: 0
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

ack@3 ack@3

S1

S2

S3

Timestamp:4
Queue: [S1@0; S2@1]
S1max: 3
S3max: 3

Timestamp: 3
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

S1

S2

S3

Timestamp:4
Queue: [S1@0; S2@1]
S1max: 3
S3max: 3

Timestamp: 4
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

release@4

release@4 S1

S2

S3

Timestamp:5
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 4
Queue: [S2@1]
S2max: 1
S3max: 0

Timestamp: 5
Queue: [S2@1]
S1max: 4
S2max: 1

S1

S2

S3

Timestamp:6
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 4
Queue: [S2@1]
S2max: 1
S3max: 0

Timestamp: 6
Queue: [S2@1]
S1max: 4
S2max: 1

ack@6

ack@6 S1

S2

S3

Timestamp:6
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 6
Queue: [S2@1]
S2max: 6
S3max: 6

Timestamp: 6
Queue: [S2@1]
S1max: 4
S2max: 1

Mutual exclusion as SMR

State Machine Replication (SMR)

State: queue of processes who want the lock

Commands: Pi requests, Pi releases

Process a command iff we’ve seen all commands w/
lower timestamp

What are advantages/disadvantages?

Lamport paper discussion

What happens when we need to add a process?

Why is coordination necessary for locking?

Events that happened vs. might have happened

Vector clocks

Precisely represent transitive causal relationships

T(A) < T(B) <-> happens-before(A, B)

Idea: track events known to each node, on each node

Used in practice for eventual and causal consistency

- git, Amazon Dynamo, …

Vector clocks

Clock is a vector C, length = # of nodes

On node i, increment C[i] on each event

On receipt of message with clock Cm on node i:

- increment C[i]

- for each j != i

- C[j] = max(C[j], Cm[j])

Vector Clocks

Compare vectors element by element

Provided the vectors are not identical,

If Cx[i] < Cy[i] and Cx[j] > Cy[j] for some i, j

Cx and Cy are concurrent

if Cx[i] <= Cy[i] for all i

Cx happens before Cy

Example

S1 S2 S3

A (T = ?)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (T = ?)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (0,0,1)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)

S1

S2

S3

Timestamp: 0
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

S1

S2

S3

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

request@0,1,0 request@0,1,0

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 1,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,1
Queue: [S1@0,0,0;
S2@0,1,0]

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 2,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

ack@2,1,0 ack@0,1,2

S1

S2

S3

Timestamp: 2,2,2
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 2,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

S1

S2

S3

Timestamp: 2,2,2
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 3,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

release@3,1,0

release@3,1,0 S1

S2

S3

Timestamp: 3,3,2
Queue: [S2@0,1,0]

Timestamp: 3,1,0
Queue: [S2@0,1,0]

Timestamp: 3,1,3
Queue: [S2@0,1,0]

S1

S2

S3

Timestamp: 3,4,2
Queue: [S2@0,1,0]

Timestamp: 3,1,0
Queue: [S2@0,1,0]

Timestamp: 3,1,4
Queue: [S2@0,1,0]

ack@3,4,2

ack@3,1,4 S1

S2

S3

Timestamp: 3,4,2
Queue: [S2@0,1,0]

Timestamp: 4,4,4
Queue: [S2@0,1,0]

Timestamp: 3,1,4
Queue: [S2@0,1,0]

