
Implementing caches
Doug Woos

Example

System
+

Caches

Client

Client

Client
N. America

Asia

Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

What if clients use a sharded key-value store to
coordinate their output?
Or CPUs use memory to coordinate?

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Write buffering: Can we start to write done1 before we
finish write to k1?
Yes, if order enforced at the server

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Write buffering: Can we start to write done1 before we
finish write to k1?

Yes, if order enforced at the server

No, if sharded and want linearizability: must serialize writes

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

What if caches can hold out of date data?

What might go wrong?

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Asia: done1 = true, cached (old) k1

Africa: done2 = true, cached (old) k1 and k2
Africa: done2 = true, k2 correct, cached k1 (!)

Rule for caches and shards

Suppose each process specifies operations in some order

Sequentially consistent if:

1. Operations applied in processor order, and

2. All operations to a single key are serialized (as if to a
single copy)

How do we ensure #2?

- Can study each memory location in isolation

Invalidations vs. Leases

Invalidations

- Track where data is cached

- When doing a write, invalidate all (other) locations

- Data can live in multiple caches during reads
Leases

- Permission to serve data for some time period

- (if weak) eventually consistent

- (if strong) Wait until lease expires before update

Write-through vs. write-back

Write-through

- Writes go to the server

- Caches only hold clean data
Write-back

- Writes go to cache

- Dirty cache data written to server when necessary

Write-through vs. write-back

Mechanism

Write policy
Invalidations Leases

Write-through AFS
(Andrew FS) DNS

Write-back Sprite NFS

Write-through invalidations
Track all caches with read copies

On a write:

- Send invalidations to all caches with a copy
- Each cache invalidates, responds

- Wait for all invalidations, do update

- Return

Reads can proceed:
- If there is a cached copy

- or if cache miss and no write waiting at server

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1=false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1=false done2=false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1=false done2=false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1=false done2=false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1=false done2=false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1=true done2=false

Questions

While a write is waiting on invalidations, can clients
read old values from caches?

Questions

While a write is waiting on invalidations, can the writing
client perform a different write?

Questions

While a write is waiting on invalidations, can the server
process a read to a different location?

Questions

While a write is waiting on invalidations, can the server
process a read to the same location?

Questions

While a write is waiting on invalidations, can the server
process a write to a different location?

Questions

While a write is waiting on invalidations, can the server
process a write to the same location?

More Questions

Why does the server wait until write is applied before
returning to the client?

Why queue incoming requests during a write?

How much directory state is needed at server?

Write-back invalidations
Track all reading and writing caches

On a write:

- Send invalidations to all caches

- Each cache invalidates, responds 
 (possibly with updated data)

- Wait for all invalidations

- Return

Reads can proceed when there is a local copy
Order requests carefully at server

- Enforce processor order, avoid deadlock

MSI/MESI

Protocols used for processor caches

Similar to protocol used e.g. in Sprite

Useful to understand

MSI

Three cache states:

- Modified: this is the only copy, it’s dirty
- Shared: this is one of many copies, it’s clean

- Invalid

Allowed states between pairs of caches:
M S I

M ü

S ü ü

I ü ü ü

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server k1 = 0
k2 = 0
done1 = false
done2 = false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

done1 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

done1 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

done1 = false; S done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

done1 = false; S done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M done1 = false; S done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

k1: America

done1: Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M done1 = false; S done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

k1: America

done1: Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M done1 = false; I done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

k1: America

done1:
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M
done1 = true; M

done1 = false; I done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

k1: America

done1: America
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M
done1 = true; M

done1 = false; I done2 = false; S

k1 = 0
k2 = 0
done1 = false
done2 = false

k1: America

done1: America
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M
done1 = true; S

done1 = false; I done2 = false; S

k1 = 0
k2 = 0
done1 = true
done2 = false

k1: America

done1: America
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M
done1 = true; S

done1 = true; S done2 = false; S

k1 = 0
k2 = 0
done1 = true
done2 = false

k1: America

done1: America, Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M
done1 = true; S

done1 = true; S done2 = false; S

k1 = 0
k2 = 0
done1 = true
done2 = false

k1: America

done1: America, Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; M
done1 = true; S

done1 = true; S done2 = false; S

k1 = 0
k2 = 0
done1 = true
done2 = false

k1: America

done1: America, Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; S
done1 = true; S

done1 = true; S done2 = false; S

k1 =42
k2 = 0
done1 = true
done2 = false

k1: America

done1: America, Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; S
done1 = true; S

done1 = true; S
k1 = 42; S

done2 = false; S

k1 =42
k2 = 0
done1 = true
done2 = false

k1: America, Asia

done1: America, Asia
done2: Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Server

k1 = 42; S
done1 = true; S

done1 = true; S
k1 = 42; S
k2 = 43; M

done2 = false; S

k1 =42
k2 = 0
done1 = true
done2 = false

k1: America, Asia
k2: Asia
done1: America, Asia
done2: Africa

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified

Read miss

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified
Write miss

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified

Local write

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified

Remote write

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified
Remote write

MSI

Invalid

Shared

Modified

MSI

Invalid

Shared

Modified

Write back /
Remote read

MESI
Motivation:

- Common pattern: i++ (read, then a write)

- MSI inefficient when doing a read and then a write

- If no one else has a copy, can “claim” it with the read

Four cache states:

- Modified: this is the only copy, it’s dirty

- Exclusive: this is the only copy, it’s clean

- Shared: this is one of many copies, it’s clean

- Invalid

MESI allowed states

M E S I
M ü

E ü

S ü ü

I ü ü ü ü

ClientClientClient

data = get(k1)
put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

k1 is “Exclusive” to N. America after first read

Can modify without sync

False Sharing

Expensive to keep track of MESI for every memory location

Instead, coarse-grained record-keeping

- On CPUs, at the cache line granularity

- In file systems, at the granularity of a file/file block
What if two clients try to modify different memory locations
in the same cache line, concurrently?

- Cache line can only be “modified" in one at a time

- Correct behavior, but slow

Atomic Read-Modify-Write

RMW needed to implement spinlocks and other sync

Request cache line exclusive/modified
Delay concurrent remote read/write misses until entire
operation completes

Software Transactions (CPUs)
Often want multiple instructions to execute atomically

- Critical section, supported in hardware

May involve multiple cache lines
Execute normally: acquire cache lines in MESI state

If remote miss during the software transaction

- Abort transaction, erase modifications, and try again

If reach end of software transaction without remote miss
- Success!

Distributed transactions (with node failures) next time!

Caching implementations

Mechanism

Write policy
Invalidations Leases

Write-through AFS
(Andrew FS) DNS

Write-back Sprite NFS

Strong leases

Read request: key, TTL (time to live)

When server returns:

- It won’t accept writes to the key

- For TTL seconds after reply sent
Client invalidates its cache after TTL seconds

- From when request was sent

Assumes bounded physical clock sync

Strong leases

For write-through:

- Server queues writes until all leases expire
- Avoid starvation: don’t accept new reads

For write-back:

- Cache can get a write lease (exclusive)

- Server queues read requests until lease expires

Clock issues

How long should the server wait on a lease?

How long should the client wait on a lease?
What about clock skew?

- Add ε on server, subtract ε on client

Strong leases vs. Invalidations

What are advantages/disadvantages of each?

Strong leases vs. Invalidations

What are advantages/disadvantages of each?
- Strong leases potentially slower

- What if a cache fails when it has a key? Strong
leases provide better availability

Can combine techniques
- Short lease on entire cache, periodically
revalidated

- All keys invalidated on failure (after lease)

Weak leases

Cache valid until lease expires

Allow writes, other reads simultaneously

Semantics?

Weak leases

Examples: NFS, DNS, web browsers

Advantages

- Stateless at server (don’t care who is caching)
- Reads, writes always processed immediately

Disadvantages

- Consistency model (!!!)

- Overhead of revalidations
- Synchronized revalidations

Discussion

“Complexity” as a downside
Do the scalability/performance issues mentioned in
the paper exist today?

Why do we use NFS?

