
Memory Consistency
Models

Tom Anderson (+ Doug Woos)

A Central Store

Client Redis

Client

Client

A Replicated Central Store

Client

Client

Client

State machine
Client

Client

Client

State machine

N. America

Asia

Africa

With Distributed Users

Caching

Client

Client

Client

State machine

N. America

Asia

Africa

Cache

Cache

Cache

Client

Client

Client

State machine
(G-Q)

N. America

Asia

Africa

Cache

Cache

Cache

State machine
(A-F)

State machine
(Q-Z)

Caching and Sharding

Caching

Cache

Cache

Cache

Caching and Sharding

Cache

Cache

Cache

Client
System

+
Caches

+
Shards

Client

Client
N. America

Asia

Africa

How Should System Behave? Intuition

Want system to act like a single central store

- As if a single copy

Caches and shards are an implementation decision,
which shouldn’t affect client-visible behavior

Terminology

Anomaly: some sequence of operations (reads and
writes) that wouldn’t be allowed

- By the single store abstraction

Classes of memory consistency model:

- Strong consistency: no anomalies allowed

- Weak consistency: could have anomalies

- Eventual consistency: anomalies are “temporary”

Why different models?
Performance

- Consistency requires synchronization/coordination

- Slower to make sure you always return right answer

- Tradeoff: performance vs. how “wrong” or out of date

Availability

- What if client is offline, or network is not working?

- Eventual consistency may be only option

Programmability

- Weaker models are harder to reason against

Linearizability

Linearizability or Strict Consistency

- Equivalent to idealized single store

- Reads always reflect latest write

- Concurrent operations can be executed in any order

- All reads reflect same order of operations

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

???

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

A,B

append(k,B)

ok

read(k)

A,B

System
+

Caches
+

Shards
+

Failoverappend(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

???

System
+

Caches
+

Shards
+

Failoverappend(k, A)

ok

read(k)

A,B

append(k,B)

ok

read(k)

A,B

System
+

Caches
+

Shards
+

Failoverappend(k, A)

ok

read(k)

B,A

append(k,B)

ok

read(k)

B,A

System
+

Caches
+

Shards
+

Failoverappend(k, A)

ok

read(k)

A,B??

append(k,B)

ok

read(k)

B,A??

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

A,B

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

A,B

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

A or A,B

append(k,B)

ok

read(k)

A,B

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

A,B

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

A or A,B

append(k,B)

ok

read(k)

A,B

Serializability

Serializability or Sequential Consistency

- Execution equivalent to some serial interleaving at
a single store

- Plus each node’s operations done in order

Linearizability, but without real time constraint

Allows optimizations:

- SQL query optimization

- Asynchronous writes to processor caches

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

???

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

A

append(k,B)

ok

read(k)

A,B

1

2

3

4
System

+
Caches

+
Shards

+
Failover

append(k, A)

ok

read(k)

A,B

append(k,B)

ok

read(k)

A,B

1

3

2

4

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

B,A

append(k,B)

ok

read(k)

B

3

4

1

2

Eventual Consistency

Read Your Writes

- Clients will always see their own writes

+ Eventual Consistency

- Clients will eventually see everyone’s writes

- And eventually the order will be consistent

- Facebook model, approximately

Q: Can you test if a system is eventually consistent?

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

???

append(k,B)

ok

read(k)

???

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

A

append(k,B)

ok

read(k)

B

System
+

Caches
+

Shards
+

Failover
append(k, A)

ok

read(k)

A

append(k,B)

ok

read(k)

B

… …

Snapshot Reads

Reads can be stale

Reads in same transaction need to be consistent

- Taken from the same global state

For example, compute sum of all bank accounts

- With concurrent transfers between accounts

Next couple of lectures

How to implement (various types of) consistency

“There are only two hard things in Computer
Science: cache invalidation and naming things.”  
 — Phil Karlton

If we cache and shard data, how do we make sure a
read reflects writes by other clients?

- While being fast and scalable and available

