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How Should System Behave? Intuition

Want system to act like a single central store 

- As if a single copy 

Caches and shards are an implementation decision, 
which shouldn’t affect client-visible behavior 

Terminology

Anomaly: some sequence of operations (reads and 
writes) that wouldn’t be allowed 

- By the single store abstraction 

Classes of memory consistency model: 

- Strong consistency: no anomalies allowed 

- Weak consistency: could have anomalies 

- Eventual consistency: anomalies are “temporary”

Why different models?
Performance 

- Consistency requires synchronization/coordination 

- Slower to make sure you always return right answer 

- Tradeoff: performance vs. how “wrong” or out of date 

Availability 

- What if client is offline, or network is not working? 

- Eventual consistency may be only option 

Programmability 

- Weaker models are harder to reason against



Linearizability

Linearizability or Strict Consistency 

- Equivalent to idealized single store 

- Reads always reflect latest write 

- Concurrent operations can be executed in any order 

- All reads reflect same order of operations
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Serializability

Serializability or Sequential Consistency 

- Execution equivalent to some serial interleaving at 
a single store 

- Plus each node’s operations done in order 

Linearizability, but without real time constraint 

Allows optimizations: 

- SQL query optimization 

- Asynchronous writes to processor caches
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Eventual Consistency

Read Your Writes 

- Clients will always see their own writes 

+ Eventual Consistency 

- Clients will eventually see everyone’s writes 

- And eventually the order will be consistent 

- Facebook model, approximately 

Q: Can you test if a system is eventually consistent?
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Snapshot Reads

Reads can be stale 

Reads in same transaction need to be consistent 

- Taken from the same global state 

For example, compute sum of all bank accounts 

- With concurrent transfers between accounts

Next couple of lectures

How to implement (various types of) consistency 

“There are only two hard things in Computer 
Science: cache invalidation and naming things.”  
                                               — Phil Karlton 

If we cache and shard data, how do we make sure a 
read reflects writes by other clients? 

- While being fast and scalable and available


