Byzantine Fault Tolerance

(h/t Ellis Michael and Dan Ports)

5/25/18

Failure models

« Fail-stop: nodes either execute the protocol correctly or just stop
« Byzantine failures: nodes can behave in any arbitrary way

o Send illegal messages, try to trick other nodes, collude, ...
« Why this model?

o Consequences of software bugs are often unpredictable;
measurable rate of (not fail stop) hardware failures

o Build systems that don’t rely on everyone being trusted

What can go wrong?

A: Append(x, "foo"); Append(x, "bar")
B: Get(x) -> "foo bar"
C: Get(x) -> "foo bar”

What can a malicious server do?

return something totally unrelated

o

reorder the append operations (“bar foo”)

o

only process one of the appends

o

show B and C different results

Paxos is fail-stop tolerant

« Paxos tolerates up to f out of 2f+1 fail-stop failures

« What could a malicious replica do?

stop processing requests (but Paxos should handle this!)

°

change the value of a key

o

acknowledge an operation then discard it

°

execute and log a different operation

o

tell some replicas that slot 42 is Put and others that it is Get

o

force view changes to keep the system from making progress

BFT replication

Same replicated state machine model as Paxos

Tolerate f byzantine failures out of 3f+1 replicas

Other 2f+1 replicas are non-faulty, but might be slow

.

Use voting, signatures so that the correct replicas
return the right result

If client hears the same thing from f+1 replicas, done!

BFT model

Attacker controls f replicas

o can make them do anything

o knows their crypto keys, can send messages

Attacker knows what protocol the other replicas are running

Attacker can delay messages in the network arbitrarily

But the attacker can't

o cause more than f replicas to fail
o cause clients to misbehave

o break crypto

5/25/18

Why is BFT consensus hard?

...and why do we need 3f+1 replicas?

Paxos Quorums

« Why did Paxos need 2f+1 replicas to tolerate f failures?
« Every operation needs to talk w/ a majority (f+1)

request o fof those nodes

might fail
A o need one left

o quorums intersect
J qu . g o g a)

The Byzantine case

« What if we tried to tolerate Byzantine failures with
2f+1 replicas?

put(X, 1) get(x)

Vi

o

T
X=0

Quorums

« In Paxos: quorums of f+1 out of 2f+1 nodes

o quorum intersection:
any two quorums intersect at at least one node

« For BFT: quorums of 2f+1 out of 3f+1 nodes
quorum majority

any two quorums intersect at f+7 nodes
=> any two quorums intersect at at least one good node

o

Are quorums enough?
put(X,1)

\
-

Are quorums enough?

« We saw this problem before with Paxos:
just writing to a quorum wasn’t enough

« Solution in Paxos:
o use a two-phase protocol: propose, then accept

5/25/18

BFT approach BFT approach

« Use a primary to order requests All replicas send replies directly to client

Replicas exchange information about ops received from
primary (to make sure the primary isn’t equivocating)

« But the primary might be faulty

o could send wrong result to client

.

Clients notify all replicas of ops, not just primary;
o could ignore client request entirely if no progress, they replace primary

o could send different op to different replicas All messages cryptographically signed; serve as
(this is the really hard case!) transferrable proof (e.g., | know you received message X)

Attempt 1 Attempt 2

e Client sends request to primary & other replicas

Client sends
request to current

Primary Request Prepare PrepareOk Reply

o * Primary assigns seq number, sends PRE-PREPARE(seq, op) to all

Primary replicas

Replica 1

* When replica receives PRE-PREPARE, sends PREPARE(seq, op) to

Repica | o oposes all replicas
request in seq

number n

o 2f+1 PREPAREs serve as proof certificate, to anyone

« What's the problem with using this?) _ _
o Once it has proof, the replica executes and replies to the client

+ primary might send different op order to replicas o Client can proceed when it hears f+1 (same) replies

Request Pre-Prepare Prepare Reply F |ty p | ry
o, aulty prima
Primary » : « What if the primary sends different ops to different replicas?
Replica 1 o case 1: all good nodes get 2f+1 matching prepares
Replica 2 = they must have gotten the same op
Replica 3 o case 2: >=f+1 good nodes get 2f+1 matching prepares
= they must have gotten the same op
« Can a faulty non-primary replica prevent progress? = what about the other (f or less) good nodes?
« Can a faulty primary cause a problem that won’t be detected? o case 3: < f+1 good nodes get 2f+1 matching prepares
o What if it sends ops in a different order to different replicas? = system is stuck, doesn’t execute any request

5/25/18

View changes

What if a replica suspects the primary of being faulty?
e.g., heard request but not PRE-PREPARE

Can it start a view change on its own?
o no - it needs f+1 view change
Who will be the next primary?

o How do we keep a malicious node from making sure it's
always the next primary?

o primary = view number mod n

.

Straw-man view change

When a replica suspects the primary, sends VIEW-CHANGE to
the next primary, includes all of the PREPARE certificates it
received. Asks other replicas to join in.

Other replicas join the view change when they receive f+1
requests.

Once primary receives 2f+1 VIEW-CHANGEs,
announces view with NEW-VIEW message

o includes copies of the VIEW-CHANGES (showing the view
change is justified; propagates the PREPARE certificates)

o starts numbering new operations after last seq number it saw

What goes wrong?

Some replica saw 2f+1 PREPAREs for an op in seq
number n, executed it

The new primary did not receive the PREPARE for
that op

New primary starts numbering new requests at n
=> two different ops with seq num n!

Fixing view changes
Need another round in the operation protocol!

Not just enough to know that replicas agreed on an
op for seq n, need to make sure that the next primary
will hear about it

After receiving 2f+1 PREPAREsS, replicas send
COMMIT message to let the others know

Only execute requests after receiving 2f+1 COMMITs;
receiving 2f+1 COMMITs is a certificate that any quorum
contains f+1 nodes with the PREPARE certificate

The final protocol

client sends op to primary
primary sends PRE-PREPARE(seq, op) to all
all send PREPARE(seq, op) to all

after replica receives 2f+1 matching PREPARE(seq, op),
send COMMIT(seq, op) to all

after receiving 2f+1 matching COMMIT(seq, op),
execute op, reply to client

The final protocol

Request Pre-Prepare Prepare Commit Reply

Client
Primary
Replica 1

Replica 2

Replica 3

5/25/18

The final protocol

Correct clients only accept replies from f+1 replicas

Correct replicas only execute once they have a COMMIT
certificate, implying that f+1 correct replicas have a
PREPARE certificate

Therefore, if a replica has a COMMIT certificate, that
operation will survive in that seq into new views

Replicas never send conflicting PREPAREs in the same view

Therefore, no two correct replicas ever execute different
operations for the same seq number

BFT vs MultiPaxos

« BFT: 4 phases « MultiPaxos: 3 phases

o PRE-PREPARE - primary o PREPARE - primary
determines request order determines request order

o PREPARE - replicas make
sure primary told them same
order

o

o

COMMIT - replicas ensure PREPARE-OK - replicas
that a quorum knows about ensure that a quorum knows
the order about the order

o

o execute and reply execute and reply

PBFT vs MultiPaxos

Request Prepare PrepareOk Reply

Client

Primary

Replica 1

Replica 2

Reavest Pro-Prepare Prepare Commit Reply

Ciient

Primary

Replica 1

Replica 2

T
;«:@«

Replica 3

What did this buy us?

« Before, we could only tolerate fail-stop failures with
replication

« Now we can tolerate any failure, benign or malicious
o as long as it only affects less than 1/3 replicas

o (what if more than 1/3 replicas are faulty?)

Performance

« Why would we expect BFT to be slow?
o Latency (extra round)
o Message complexity (O(n?) communication!)

o Crypto ops are slow!

Implementation Complexity

« Building a bug-free Paxos is hard!
« BFT is much more complicated
« Which is more likely?
o bugs caused by the BFT implementation

o the bugs that BFT is meant to avoid

5/25/18

BFT summary

« It’s possible to build systems that work correctly even
though parts may be malicious!

« Requires a lot of complex and expensive
mechanisms

« On the boundary of practicality?

