
5/25/18

1

Byzantine Fault Tolerance

(h/t Ellis Michael and Dan Ports)

Failure models

•  Fail-stop: nodes either execute the protocol correctly or just stop

•  Byzantine failures: nodes can behave in any arbitrary way

○  Send illegal messages, try to trick other nodes, collude, …

•  Why this model?

○  Consequences of software bugs are often unpredictable;
measurable rate of (not fail stop) hardware failures

○  Build systems that don’t rely on everyone being trusted

What can go wrong?

A: Append(x, "foo"); Append(x, "bar")"
B: Get(x) -> "foo bar""
C: Get(x) -> "foo bar”

•  What can a malicious server do?

○  return something totally unrelated

○  reorder the append operations (“bar foo”)

○  only process one of the appends

○  show B and C different results

Paxos is fail-stop tolerant

•  Paxos tolerates up to f out of 2f+1 fail-stop failures

•  What could a malicious replica do?

○  stop processing requests (but Paxos should handle this!)

○  change the value of a key

○  acknowledge an operation then discard it

○  execute and log a different operation

○  tell some replicas that slot 42 is Put and others that it is Get

○  force view changes to keep the system from making progress

BFT replication

•  Same replicated state machine model as Paxos

•  Tolerate f byzantine failures out of 3f+1 replicas

•  Other 2f+1 replicas are non-faulty, but might be slow

•  Use voting, signatures so that the correct replicas
return the right result

•  If client hears the same thing from f+1 replicas, done!

BFT model

•  Attacker controls f replicas

○  can make them do anything

○  knows their crypto keys, can send messages

•  Attacker knows what protocol the other replicas are running

•  Attacker can delay messages in the network arbitrarily

•  But the attacker can't

○  cause more than f replicas to fail

○  cause clients to misbehave

○  break crypto

5/25/18

2

Why is BFT consensus hard?

...and why do we need 3f+1 replicas?

Paxos Quorums

•  Why did Paxos need 2f+1 replicas to tolerate f failures?

•  Every operation needs to talk w/ a majority (f+1)"
"
"
"
"
"
"
"

request

OK

○  f of those nodes"
might fail

○  need one left

○  quorums intersect X

•  What if we tried to tolerate Byzantine failures with "
2f+1 replicas?"
"
"
"
"
"
"
"

The Byzantine case

put(X, 1)

OK

X=1

X=0

get(X)

X=0 X=0

X=1

X=0

X=0

Quorums

•  In Paxos: quorums of f+1 out of 2f+1 nodes

○  quorum intersection:"
any two quorums intersect at at least one node

•  For BFT: quorums of 2f+1 out of 3f+1 nodes

○  quorum majority 
any two quorums intersect at f+1 nodes"
=> any two quorums intersect at at least one good node

Are quorums enough?

put(X,1)

X=0 X=1 X=1 X=0

Are quorums enough?

•  We saw this problem before with Paxos:"
just writing to a quorum wasn’t enough

•  Solution in Paxos:

○  use a two-phase protocol: propose, then accept

5/25/18

3

BFT approach

•  Use a primary to order requests

•  But the primary might be faulty

○  could send wrong result to client

○  could ignore client request entirely

○  could send different op to different replicas"
(this is the really hard case!)

BFT approach

•  All replicas send replies directly to client

•  Replicas exchange information about ops received from
primary (to make sure the primary isn’t equivocating)

•  Clients notify all replicas of ops, not just primary;"
if no progress, they replace primary

•  All messages cryptographically signed; serve as
transferrable proof (e.g., I know you received message X)

Attempt 1

•  What’s the problem with using this?

•  primary might send different op order to replicas

Client sends
request to current

Primary

Primary proposes
request in seq

number n

Attempt 2

•  Client sends request to primary & other replicas

•  Primary assigns seq number, sends PRE-PREPARE(seq, op) to all
replicas

•  When replica receives PRE-PREPARE, sends PREPARE(seq, op) to
all replicas

○  2f+1 PREPAREs serve as proof certificate, to anyone

○  Once it has proof, the replica executes and replies to the client

○  Client can proceed when it hears f+1 (same) replies

•  Can a faulty non-primary replica prevent progress?

•  Can a faulty primary cause a problem that won’t be detected?

○  What if it sends ops in a different order to different replicas?

Faulty primary

•  What if the primary sends different ops to different replicas?

○  case 1: all good nodes get 2f+1 matching prepares

■  they must have gotten the same op

○  case 2: >= f+1 good nodes get 2f+1 matching prepares

■  they must have gotten the same op

■  what about the other (f or less) good nodes?

○  case 3: < f+1 good nodes get 2f+1 matching prepares

■  system is stuck, doesn’t execute any request

5/25/18

4

View changes

•  What if a replica suspects the primary of being faulty?"

e.g., heard request but not PRE-PREPARE

•  Can it start a view change on its own?

○  no - it needs f+1 view change

•  Who will be the next primary?

○  How do we keep a malicious node from making sure it’s
always the next primary?

○  primary = view number mod n

Straw-man view change

•  When a replica suspects the primary, sends VIEW-CHANGE to

the next primary, includes all of the PREPARE certificates it
received. Asks other replicas to join in."

•  Other replicas join the view change when they receive f+1
requests.

•  Once primary receives 2f+1 VIEW-CHANGEs,"
announces view with NEW-VIEW message

○  includes copies of the VIEW-CHANGES (showing the view
change is justified; propagates the PREPARE certificates)

○  starts numbering new operations after last seq number it saw

What goes wrong?

•  Some replica saw 2f+1 PREPAREs for an op in seq
number n, executed it

•  The new primary did not receive the PREPARE for
that op

•  New primary starts numbering new requests at n"
=> two different ops with seq num n!

Fixing view changes

•  Need another round in the operation protocol!

•  Not just enough to know that replicas agreed on an
op for seq n, need to make sure that the next primary
will hear about it

•  After receiving 2f+1 PREPAREs, replicas send
COMMIT message to let the others know

•  Only execute requests after receiving 2f+1 COMMITs;
receiving 2f+1 COMMITs is a certificate that any quorum
contains f+1 nodes with the PREPARE certificate

The final protocol

•  client sends op to primary

•  primary sends PRE-PREPARE(seq, op) to all

•  all send PREPARE(seq, op) to all

•  after replica receives 2f+1 matching PREPARE(seq, op),"
send COMMIT(seq, op) to all

•  after receiving 2f+1 matching COMMIT(seq, op),"
execute op, reply to client

The final protocol

5/25/18

5

The final protocol

•  Correct clients only accept replies from f+1 replicas"

•  Correct replicas only execute once they have a COMMIT
certificate, implying that f+1 correct replicas have a
PREPARE certificate"

•  Therefore, if a replica has a COMMIT certificate, that
operation will survive in that seq into new views"

•  Replicas never send conflicting PREPAREs in the same view"

•  Therefore, no two correct replicas ever execute different
operations for the same seq number

BFT vs MultiPaxos

•  BFT: 4 phases

○  PRE-PREPARE - primary
determines request order

○  PREPARE - replicas make
sure primary told them same
order

○  COMMIT - replicas ensure
that a quorum knows about
the order

○  execute and reply

•  MultiPaxos: 3 phases

○  PREPARE - primary
determines request order

○  PREPARE-OK - replicas
ensure that a quorum knows
about the order

○  execute and reply

PBFT vs MultiPaxos
 What did this buy us?

•  Before, we could only tolerate fail-stop failures with
replication

•  Now we can tolerate any failure, benign or malicious

○  as long as it only affects less than 1/3 replicas

○  (what if more than 1/3 replicas are faulty?)

Performance

•  Why would we expect BFT to be slow?

○  Latency (extra round)

○  Message complexity (O(n2) communication!)

○  Crypto ops are slow!

Implementation Complexity

•  Building a bug-free Paxos is hard!

•  BFT is much more complicated

•  Which is more likely?

○  bugs caused by the BFT implementation

○  the bugs that BFT is meant to avoid

5/25/18

6

BFT summary

•  It’s possible to build systems that work correctly even
though parts may be malicious!

•  Requires a lot of complex and expensive
mechanisms

•  On the boundary of practicality?

