
Two-phase commit
Tom Anderson and Doug Woos

Two Generals Problem

Two generals want to coordinate a time to attack
Messengers can be killed, arbitrarily delayed

No other communication

If either attacks alone, army will be destroyed

Design a protocol to coordinate an attack

attack?

AntonyCaesar

attack at dawn?

attack?

AntonyCaesar

attack at dawn?

Works for me!

attack?

AntonyCaesar

attack at dawn?

Works for me!

attack?

AntonyCaesar

this is getting old

attack at dawn?

Works for me!

attack?

AntonyCaesar

this is getting old

How about we just go for it?

Fisher Lynch Paterson (FLP)

Impossible to reach consensus in an asynchronous
distributed system with unreliable messages

Even when all the messages are delivered!

- Provided we don’t know if they are delivered
Implies the “CAP” theorem

- Cannot have both availability and consistency

- Have to choose one!

Two Phase Commit

If we can’t reach consensus, what can we do?

Central coordinator decides, tells everyone else

- One phase commit

- What if some participants can’t do the request?
Two phase commit:

- Central coordinator asks

- Participants commit to commit

- Central coordinator decides, tells everyone else

Two Phase Commit Setting

Atomic read/update to multiple pieces of data,
potentially stored in multiple locations

- Account transfer between banks
- Multikey update to a sharded key-value store,

e.g., with local locks

Note: two phase locking, write ahead logging are
related but different concepts

Calendar event creation

Doug has three advisors (Tom, Zach, Mike)

Want to schedule a meeting with all of them

- Let’s try Tues at 11, people are usually free then

Calendars all live on different nodes!
Other students also trying to schedule meetings

Nodes can fail, messages can be dropped (of course)

Calendar event creation (wrong)

Tom Mike Zach

Doug

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meet at 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

OK

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meet at 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

OK

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meet at 11 on Tues

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Busy!

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Calendar event creation (better)

Tom Mike Zach

Doug

Meet at 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

OK

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Meet at 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues OK

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Meet at 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Busy!

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Never mind!

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Never mind!

Calendar event creation (better)

Tom Mike Zach

Doug

Two-phase commit

Atomic commit protocol (ACP)

- Every node arrives at the same decision

- Once a node decides, it never changes
- Transaction committed only if all nodes vote Yes

- In normal operation, if all processes vote Yes the
transaction is committed

- If all failures are eventually repaired, the
transaction is eventually either committed or aborted

Two-phase commit
Roles:

- Participants (Mike, Tom, Zach): nodes that must
update data relevant to the transaction

- Coordinator (Doug): node responsible for executing
the protocol (might also be a participant)

RPCs:

- PREPARE: Can you commit this transaction?

- COMMIT: Commit this transaction

- ABORT: Abort this transaction

2PC without failures
Coordinator Participant Participant

Prepare
Prepare

Yes

Yes
Commit

Commit

Yes

2PC without failures
Coordinator Participant Participant

Prepare
Prepare

Yes

NO
ABORT

ABORT

Nope

Failures

In the absence of failures, 2PC is pretty simple!
When can interesting failures happen?

- Participant failures?

- Coordinator failures?

- Message drops?

Participant failures:
Before sending response?

Coordinator Participant Participant
Prepare

Prepare

Yes

No Abort

Abort

Decision?

Participant failures:
After sending vote?

Coordinator Participant Participant
Prepare

Prepare

Yes

Yes
Commit

Commit

Yes

Participant failures:
Lost vote?

Coordinator Participant Participant
Prepare

Prepare

Yes
Yes

No Abort

Abort

Decision?

Coodinator failures:
Before sending prepare

Coordinator Participant Participant

Prepare
Prepare

Yes
Yes

Yes Commit
Commit

Coordinator failures:
After sending prepare

Coordinator Participant Participant
Prepare

Prepare

Yes Yes
Yes Commit

Commit

Prepare
Prepare

Coordinator failures:
After receiving votes

Coordinator Participant Participant
Prepare

Prepare

Yes Yes
Yes Commit

Commit

Prepare
Prepare

Yes Yes

Coordinator failures:
After sending decision

Coordinator Participant Participant
Prepare

Prepare

Yes
Commit

Yes Yes

Commit

Decision?

Do we need the coordinator?
Coordinator Participant Participant

Prepare
Prepare

Yes

Commit

Commit

Yes Yes

Decision?

What if we do not have the
coordinator’s decision?

Coordinator Participant Participant
Prepare

Prepare

Yes
or
No?

Commit?

Decision?

Yes

Yes

2PC is a blocking protocol

• A blocking protocol is one that cannot make
progress if some of the participants are unavailable
(either down or partitioned).

• It has fault-tolerance but not availability.

• This limitation is fundamental (2 generals problem).

