
CSE 452/M552 
Distributed Systems

Doug Woos (and Tom Anderson)



About me

I’m Doug, one of Tom’s students 

Mostly using Tom’s materials 

Work on distributed systems verification 

He/him or they/them



Logistics

Course website 

- Important: Office Hours (none today) 

Piazza 

Code word is “leopard”: http://tinyurl.com/m9eg43b 

Names

http://tinyurl.com/m9eg43b


Place in Curriculum
CSE 333: Systems Programming 

- Projects in C++ 

- How to use the OS interface 

CSE 451: Operating Systems 

- How to make a single computer work reliably 

- How an operating system works internally 

CSE 452: Distributed Systems 

- How to make a set of computers work reliably and 
efficiently, despite failures of some nodes 



Related courses
CSE 461: Computer Communication Networks 

- How to connect computers together 

- Networks are a type of distributed system 

CSE 444: Database System Internals 

- How to store and query data, reliably and efficiently 

- Mostly single-node databases 

CSE 550: Systems For All 

- One quarter firehose version of 451/452/461/444 
- Mostly PhD students 



Thought experiment

Imagine a group of people, two of whom have green 
dots on foreheads 

Without using a mirror or communicating, can anyone 
tell if they have a green dot? 

What if I say: someone has a green dot



What you know 
vs. 

What you know others know



Distributed systems

Multiple connected nodes that cooperate in 
performing a task or providing a service 

- Examples?



Why distributed systems?

Communicate across geographic separation 

 - Locality is super important 

Ensure availability 

 - Whole system shouldn’t fail when one node fails 

Aggregate systems for higher capacity 

- Nodes fail all the time 

- Whole system shouldn’t fail when one node does



Why are distributed systems cool*?

Extremely important in practice 

- Crucial to bottom-line of huge companies 

- Crucial to the daily lives of many users 

Rich, well-studied theory 

- Long tradition of formal reasoning 

- Neat mathematical results

* For some values of “cool”



Why are distributed systems hard?
Asynchrony 

- Different nodes run at different speeds  

- Messages can be unpredictably, arbitrarily delayed 

Failures (partial and ambiguous) 

- Parts of the system can crash 

- Can’t tell crash from slowness 

Concurrency and consistency 

- Replicated state, cached on multiple nodes 

- How to keep many copies of data consistent? 



Why are distributed systems hard?
Performance 

- Have to efficiently coordinate many machines 

- Performance is variable and unpredictable 

- Tail latency: only as fast as slowest machine 

Testing and verification 

- Almost impossible to test all failure cases 

- Proofs (emerging field) are really hard 

Security 

- Need to assume adversarial nodes 



Sense of scale

Wide-area matters (across continents) 

Local-area also matters (within a data center) 

Correctness is the same 

- Have to account for failures either way 

Performance is different



Prineville Data Center

Huge FB data center in Oregon 

Contents: 

- 200K+ servers 

- 500K+ disks 

- 10K network switches 

- 300K+ network cables 

How likely is it that everything is functioning at once?



MTTF/MTTR

Mean Time to (Failure/Repair) 

Disk failures per year: 20% or so 

- So like 2/hour 

- Takes about an hour to restore 

If each server reboots once/month 

- 30s reboot -> 5 mins/year offline 

- 500K mins/year -> ~2 rebooting 

… and not all of FB’s servers are in Oregon



Local vs. Remote Operations

How long to do a procedure call locally? 

- 10 instructions 

How about to another node in the same DC? 

How about to a node in some other DC? 

- Speed of light = 1ft/ns



Properties we want

Fault-tolerant (Lab 2) 

- Doesn’t go wrong when components fail 

Highly available (Lab 3) 

- Doesn’t go down when components fail 

Scalable (Lab 4) 

- Can grow to more (nodes, memory, etc.)



Other properties we want

Consistent (All labs) 

- Appears as one node 

Predictable performance 

- Consistently stays within SLAs 

Secure (Week 9) 

- Can grow to more (nodes, memory, etc.) 

Guaranteed Correct (Week 10) 

- Formally proven to follow spec



Labs

Implement a sharded, replicated key-value store 

- Lab 1: MapReduce 

- Lab 2: Primary/backup 

- Lab 3: Paxos 

- Lab 4: Sharding 

In Golang 

- New-ish language, developed at Google 

- “Easy” to learn, “easy” to write concurrent code



Labs

The labs are hard 

- Based on MIT’s grad-level course 

- Nontrivial for me, TAs, Tom 

General tips 

- Start early 

- Think before you code 

- Ask for help! (classmates, us, Piazza) 

Good candidates for code portfolio



Readings and blogs

No good textbook in this area 

~14 papers (first one this Wednesday) 

- “How to read a paper,” Keshav 2007 

Blog 

- For 5 papers, write a short, unique thought (2-3 
sentences) on the discussion board 



Problem sets

5 problem sets 

- First one due in 3 weeks, out next Friday 

- To be done individually 

- Short answer questions 

- Should be quick (< 1 hour)



Another thought experiment

Two generals have to coordinate a time to attack 

Messengers can be killed, arbitrarily detained 

No other communication 

If either attacks alone, army will be destroyed 

Design a protocol to coordinate an attack


