
Spanner

Doug Woos
(based on slides by Dan Ports)

Bigtable in retrospect
• Definitely a useful, scalable system!

• Still in use at Google, motivated lots of NoSQL DBs

• Biggest mistake in design (per Jeff Dean, Google): 
not supporting distributed transactions!

• became really important w/ incremental updates

• users wanted them, implemented themselves,  
often incorrectly!

• at least 3 papers later fixed this — two next week!

Transactions
• Important concept for simplifying reasoning about complex

actions

• Goal: group a set of individual operations  
(reads and writes) into an atomic unit

• e.g., checking_balance -= 100, savings_balance += 100

• Don’t want to see one without the others

• even if the system crashes (atomicity/durability)

• even if other transactions are running concurrently (isolation)

Traditional transactions
• as found in a single-node database

• atomicity/durability: write-ahead logging

• write each operation into a log on disk

• write a commit record that makes all ops commit

• only tell client op is done after commit record written

• after a crash, scan log and redo any transaction
with a commit record; undo any without

Traditional transactions
• isolation: concurrency control

• simplest option: only run one transaction at a time!

• standard (better) option: two-phase locking

• keep a lock per object / DB row, 
usually single-writer / multi-reader

• when reading or writing, acquire lock

• hold all locks until after commit, then release

Transactions are hard
• definitely oversimplifying: see a database textbook on how to

get the single-node case right

• …but let’s jump to an even harder problem:  
distributed transactions!

• What makes distributed transactions hard?
• savings_bal and checking_bal might be stored on different

nodes
• they might each be replicated or cached
• need to coordinate the ordering of operations across copies

of data too!

Correctness for isolation
• usual definition: serializability  

each transaction’s reads and writes are consistent
with running them in a serial order, one transaction
at a time

• sometimes: strict serializability = linearizability  
same definition + real time component

• two-phase locking on a single-node system
provides strict serializability!

Weaker isolation?
• we had weaker levels of consistency:  

causal consistency, eventual consistency, etc

• we can also have weaker levels of isolation

• these allow various anomalies:  
behavior not consistent with executing serially

• snapshot isolation, repeatable read,  
read committed, etc

Weak isolation vs weak consistency

• at strong consistency levels, these are the same: 
serializability, linearizability/strict serializability

• weaker isolation: operations aren’t necessarily atomic 
A: savings -= 100 checking += 100 
B: read savings, checking 
but all agree on what sequence of events occurred!

• weaker consistency: operations are atomic, but different
clients might see different order  
A sees: s -= 100; c += 100; read s,c  
B sees: read s,c; s -= 100; c += 100

Two-phase commit
• model: DB partitioned over different hosts, still only one copy

of each data item; one coordinator per transaction
• during execution: use two-phase locking as before; 

acquire locks on all data read/written
• to commit, coordinator first sends prepare message to all

shards; they respond prepare_ok or abort
• if prepare_ok, they must be able to commit transaction

later; past last chance to abort.
• Usually requires writing to durable log.

• if all prepare_ok, coordinator sends commit to all;  
they write commit record and release locks

Is this the end of the story?
• Availability: what do we do if either some shard or

the coordinator fails?

• generally: 2PC is a blocking protocol, can’t make
progress until it comes back up

• some protocols to handle specific situations,
e.g., coordinator recovery

• Performance: can we really afford to take locks and
hold them for the entire commit process?

Spanner

• Backend for the F1 database, which runs the ad
system

• Basic model: 2PC over Paxos

• Uses physical clocks for performance

Example: social network

• simple schema: user posts, and friends lists

• but sharded across thousands of machines

• each replicated across multiple continents

Example: social network
• example: generate page of friends’ recent posts

• what if I remove friend X, post mean comment?

• maybe he sees old version of friends list,  
new version of my posts?

• How can we solve this with locking?

• acquire read locks on friends list, and on each friend’s posts

• prevents them from being modified concurrently

• but potentially really slow?

Spanner architecture

• Each shard is stored in a Paxos group

• replicated across data centers

• has a (relatively long-lived) leader

• Transactions span Paxos groups using 2PC

• use 2PC for transactions

• leader of each Paxos group tracks locks

• one group leader becomes the 2PC coordinator, others
participants

Basic 2PC/Paxos approach
• during execution, read and write objects

• contact the appropriate Paxos group leader, acquire locks
• client decides to commit, notifies the coordinator

• coordinator contacts all shards, sends PREPARE message
• they Paxos-replicate a prepare log entry (including locks),

• vote either ok or abort
• if all shards vote OK, coordinator sends commit message

• each shard Paxos-replicates commit entry
• leader releases locks

DC1 DC2 DC3

DC1 DC2 DC3

Paxos Paxos

DC1 DC2 DC3

Paxos Paxos

2PC

Basic 2PC/Paxos approach

• Note that this is really the same as basic 2PC from before

• Just replaced writes to a log on disk with writes to a Paxos
replicated log!

• It is linearizable (= strict serializable = externally consistent)

• So what’s left?

• Lock-free read-only transactions

