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Bigtable in retrospect
• Definitely a useful, scalable system! 

• Still in use at Google, motivated lots of NoSQL DBs 

• Biggest mistake in design (per Jeff Dean, Google): 
not supporting distributed transactions! 

• became really important w/ incremental updates 

• users wanted them, implemented themselves,  
often incorrectly! 

• at least 3 papers later fixed this — two next week!



Transactions
• Important concept for simplifying reasoning about complex 

actions 

• Goal: group a set of individual operations  
(reads and writes) into an atomic unit 

• e.g., checking_balance -= 100, savings_balance += 100 

• Don’t want to see one without the others 

• even if the system crashes (atomicity/durability) 

• even if other transactions are running concurrently (isolation)



Traditional transactions
• as found in a single-node database 

• atomicity/durability: write-ahead logging 

• write each operation into a log on disk 

• write a commit record that makes all ops commit 

• only tell client op is done after commit record written 

• after a crash, scan log and redo any transaction 
with a commit record; undo any without



Traditional transactions
• isolation: concurrency control 

• simplest option: only run one transaction at a time! 

• standard (better) option: two-phase locking 

• keep a lock per object / DB row, 
usually single-writer / multi-reader 

• when reading or writing, acquire lock 

• hold all locks until after commit, then release



Transactions are hard
• definitely oversimplifying: see a database textbook on how to 

get the single-node case right 

• …but let’s jump to an even harder problem:  
distributed transactions! 

• What makes distributed transactions hard? 
• savings_bal and checking_bal might be stored on different 

nodes 
• they might each be replicated or cached 
• need to coordinate the ordering of operations across copies 

of data too!



Correctness for isolation
• usual definition: serializability  

each transaction’s reads and writes are consistent 
with running them in a serial order, one transaction 
at a time 

• sometimes: strict serializability = linearizability  
same definition + real time component 

• two-phase locking on a single-node system 
provides strict serializability!



Weaker isolation?
• we had weaker levels of consistency:  

causal consistency, eventual consistency, etc 

• we can also have weaker levels of isolation 

• these allow various anomalies:  
behavior not consistent with executing serially 

• snapshot isolation, repeatable read,  
read committed, etc



Weak isolation vs weak consistency

• at strong consistency levels, these are the same: 
serializability, linearizability/strict serializability 

• weaker isolation: operations aren’t necessarily atomic 
A:    savings -= 100                                       checking += 100 
B:                              read savings, checking 
but all agree on what sequence of events occurred! 

• weaker consistency: operations are atomic, but different 
clients might see different order  
A sees: s -= 100; c += 100;      read s,c  
B sees: read s,c;        s -= 100; c += 100



Two-phase commit
• model: DB partitioned over different hosts, still only one copy 

of each data item; one coordinator per transaction 
• during execution: use two-phase locking as before; 

acquire locks on all data read/written 
• to commit, coordinator first sends prepare message to all 

shards; they respond prepare_ok or abort 
• if prepare_ok, they must be able to commit transaction 

later; past last chance to abort. 
• Usually requires writing to durable log. 

• if all prepare_ok, coordinator sends commit to all;  
they write commit record and release locks



Is this the end of the story?
• Availability: what do we do if either some shard or 

the coordinator fails? 

• generally: 2PC is a blocking protocol, can’t make 
progress until it comes back up 

• some protocols to handle specific situations, 
e.g., coordinator recovery 

• Performance: can we really afford to take locks and 
hold them for the entire commit process?



Spanner

• Backend for the F1 database, which runs the ad 
system 

• Basic model: 2PC over Paxos 

• Uses physical clocks for performance



Example: social network

• simple schema: user posts, and friends lists 

• but sharded across thousands of machines 

• each replicated across multiple continents



Example: social network
• example: generate page of friends’ recent posts 

• what if I remove friend X, post mean comment? 

• maybe he sees old version of friends list,  
new version of my posts? 

• How can we solve this with locking? 

• acquire read locks on friends list, and on each friend’s posts 

• prevents them from being modified concurrently 

• but potentially really slow?



Spanner architecture

• Each shard is stored in a Paxos group 

• replicated across data centers 

• has a (relatively long-lived) leader 

• Transactions span Paxos groups using 2PC 

• use 2PC for transactions 

• leader of each Paxos group tracks locks 

• one group leader becomes the 2PC coordinator, others 
participants



Basic 2PC/Paxos approach
• during execution, read and write objects 

• contact the appropriate Paxos group leader, acquire locks 
• client decides to commit, notifies the coordinator 

• coordinator contacts all shards, sends PREPARE message 
• they Paxos-replicate a prepare log entry (including locks), 

• vote either ok or abort 
•   if all shards vote OK, coordinator sends commit message 

• each shard Paxos-replicates commit entry 
• leader releases locks
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Basic 2PC/Paxos approach

• Note that this is really the same as basic 2PC from before 

• Just replaced writes to a log on disk with writes to a Paxos 
replicated log! 

• It is linearizable (= strict serializable = externally consistent) 

• So what’s left? 

• Lock-free read-only transactions




