
RPC Semantics
Doug Woos

Logistics notes

Tom’s OH canceled this week

Last time

- Go tips and tricks

- RPC intro, using RPCs in Go

- MapReduce discussion

Outline

RPC semantics in detail

Go’s RPC semantics

RPC Warmup

What’s the equivalent of:

- Procedure name?

- Calling convention?

- Return value?

- Return address?

Semantics

semantics: meaning

RPC library

Read data
Deserialize args

Transport

CSE 461

RPC implementation
ok := call(address, "Worker.DoJob",
 args, &reply)

func (wk *Worker)
DoJob(args *DJArgs,
 reply *DJReply)

RPC library

Serialize args
Open connection
Write data

Read data
Deserialize reply

Serialize reply
Write data

Transport

OS

TCP/IP write

OS

TCP/IP readTCP/IP writeTCP/IP read

x x
x

Semantics

semantics: meaning

- ok == true: ???

- ok == false: ???

- Possibilities?

Semantics
At least once (NFS, DNS, …):

- true = executed at least once

- false = maybe executed, multiple times

At most once (Go, …):

- true = executed exactly once

- false = maybe executed once

- Exactly once (Lab 2 writes)

- true = executed exactly once

- never returns false

At least once

RPC library sends, waits for response

If none arrives, re-send request

After a few retries, give up and return an error

How should applications deal with this?

Example: one-node KV store (Redis)

Client sends PUT k v

Server gets request, reply dropped

Client sends PUT k v again

- What should the server do?

What if instead, op is “deduct $10 from bank acct”

What about TCP?
“Just use TCP”

TCP: reliable byte stream between two endpoints

- Retransmission of dropped packets

- Duplicate detection & removal

What if TCP times out and reconnects?

- User browses to Amazon

- RPC to purchase book

- Wifi spotty during RPC

- Browser reconnects

When does at-least-once work?

No side effects (e.g. MapReduce jobs)

- read-only, idempotent

NFS: readFileBlock, writeFileBlock

Application-level duplicate detection

At most once

Client includes unique id (UID) with each request

- same UID on re-send

RPC lib on server detects duplicates
if seen[uid] {  
 return old[uid]  
} else {  
 r = Handler()  
 old[uid] = r  
 seen[uid] = true  
 return r  
}

Some at-most-once issues

How to ensure unique UID?

- large random numbers

- combine UID (e.g. MAC address) w/ sequence #

Can clients use same UID if they crash?

Get UID from server?

When can server discard old?
Option 1

- Never!

Option 2

- Unique client IDs

- per-client sequence number

- client includes “discard <= i” w/ all RPCs

Option 3

- only allow one outstanding RPC per client

- When seq+1 arrives, discard <= seq

Option 4

- Client gives up after n minutes

- Server discards after n minutes

Handling server crashes

Server will lose old on crash

- Does it need to be persisted?

- Does it need to be replicated?

Handling server crashes

Server will lose old on crash

- Does it need to be persisted?

- Does it need to be replicated?

Needs to have same persistence/replication as data

Go RPC revisited

What are the semantics?

Go RPC revisited

At most once

Rely on TCP retry

- Open connection

- Write data

- TCP may retransmit

Return error if no reply after timeout

Go’s at-most once is not enough

Imagine side-effectful MapReduce

Master sends RPC to worker, gets a timeout

What does application do?

- Attempt to figure out if work was done

- Implement better at-most-once

- Lab 2!

Exactly once

Keep retrying forever

Need to survive client and server crashes

- Client must store pending RPCs on disk

- Server must store completed RPCs on disk

Takeaways

Failure makes RPCs complicated

Think carefully about semantics

Mechanisms in app vs. RPC vs. transport

