
Primary/Backup
Doug Woos



Logistics notes

Lab 2 posted 

HW1 up Friday 

Next week’s papers posted



Today

State machine replication 

Primary/Backup



Single-node key/value store

Client Redis

Client

Client
Put “key1” “value1”

Put “key2” “value2”

Get “key1”



Single-node state machine

Client

Client

Client

Op1 args1

Op2 args2

Op args3

State machine



Single-node state machine

Client

Client

Client

Op1 args1

Op2 args2

Op args3

State machine

x



Single-node state machine

Client

Client

Client

Op1 args1

Op2 args2

Op args3

State machine

?



State machine replication

Replicate the state machine across multiple servers 

Clients can view all servers as one state machine 

What’s the simplest form of replication?



Two servers!

At a given time: 

- Clients talk to one server, the primary 

- Data are replicated on primary and backup 

- If the primary fails, the backup becomes primary 

Goals: 

- Correct and available 

- Despite some failures



Basic operation

Clients send operations (Put, Get) to primary 

Primary decides on order of ops 

Primary forwards sequence of ops to backup 

Backup performs ops in same order (hot standby) 

- Or just saves the log of operations (cold standby) 

After backup has saved ops, primary replies to client

Client Primary BackupOps Ops



Challenges

Non-deterministic operations 

Dropped messages 

State transfer between primary and backup 

- Write log? Write state? 

There can be only one primary at a time 

- Clients, primary and backup need to agree



The View Service

Client Primary BackupOps Ops

View server
Who is primary?

Ping Ping



The View service

View server decides who is primary and backup 

- Clients and servers depend on view server 

The hard part: 

- Must be only one primary at a time 

- Clients shouldn’t communicate with view server on 
every request 

- Careful protocol design 

View server is a single point of failure (fixed in Lab 3)



On failure

Primary fails 

View server declares a new “view”, moves backup to 
primary 

View server promotes an idle server as new backup 

Primary initializes new backup’s state 

Now ready to process ops, OK if primary fails



“Views”

Comes from Viewstamped Replication (I think?) 

A view is a version of the current roles in the system 

Logically, time is a sequence of views

View 1 
Primary = A 
Backup = B

View 2 
Primary = B 
Backup = C

View 3 
Primary = C 
Backup = A



Detecting failure

Each server periodically pings (Ping RPC) view server 

- “dead” if missed n Pings 

- “live” after a single Ping 

Can a server ever be up but declared dead?



Managing servers
Any number of servers can send Pings 

- If more than two servers, extras are “idle” 

- Can be promoted to backup 

If primary dies 

- New view with old backup as primary 

If backup is dead, or no backup 

- New view with idle server as backup 

OK to have a view with a primary and no backup 

- Why?



Question 

How to ensure new primary has up-to-date state? 

- Only promote the backup -> primary 

- Idle server can become primary at startup (why?) 

What if the backup hasn’t gotten the state yet? 

- Remember, first thing = transfer state to backup



View 1 
Primary = A 
Backup = B

View 2 
Primary = B 
Backup = C

View 3 
Primary = C 
Backup = _

A stops pinging

B immediately stops pinging

Can’t move to View 3 until C gets state 
How does view server know C has state?



Primary acks

Track whether primary has acked (with ping) current 
view 

MUST stay with current view until ack 

Even if primary seems to have failed 

This is another weakness of this protocol



Question

Can more than one server think it’s primary?



Split brain

1: A, B

A is still up, but can’t reach view server

2: B, _

B learns it is promoted to primary 
A still thinks it is primary



Split brain

Can more than one server act as primary? 

- Act as = respond to clients



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer


