Paxos week!

Doug Woos



Logistics notes

Next Monday: International Workers’ Day

- No In-class lecture
- Will record a video lecture

- Please watch by next Wednesday!

_ab 2b due Wednesday
Problem Set 2 due Friday

- Typeset, short answers, please!

Lab 1, logical clocks discussion grades are out



Paxos

(deck based on slides from
Lorenzo Alvisi)



Safe Replication?

@ Suppose using primary/hot standby replication

@ How can we fell if primary has failed versus is
slow? (if slow, might end up with two primaries!)

@ FLP: impossible for a deterministic protocol to
guarantee consensus in bounded time in an
asynchronous distributed system (even if no
failures actually occur and all messages are
delivered)



2PC vs. Paxos?

@ Two phase commit: blocks if coordinator
fails affter the prepare message is sentf,
until the coordinator recovers

@ Paxos: non-blocking as long as a majority
of participants are alive, provided there is
a sufficiently long period without further
failures



The Part-Time Parliament

@ Parliament determines ) \

laws by passing sequence 2
of numbered decrees ‘“’ e

@ Legislators can leave and
enter the chamber at
arbitrary times

@ No centralized record of
approved decrees-
instead, each legislator
carries a ledger



Government 101

@ No two ledgers contain contradictory
information

@ If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

O any decree proposed by a legislator would
eventually be passed

O any passed decree would appear on the
ledger of every legislator



Government 102

@ Paxos legislature is non-partisan,
progressive, and well-intentioned

@ Legislators only care that something is
agreed to, not what is agreed to

@ To deal with Byzantine legislators, see
Castro and Liskov, SOSP 99



Supplies

Each legislator receives

lots of

ooat e S messengers
pen with indelible ink hourglass



Back to the future

@ A set of processes that can propose values
@ Processes can crash and recover

@ Processes have access to stable storage

@ Asynchronous communication via messages

@ Messages can be lost and duplicated, but not
corrupted



The Game: Consensus

SAFETY

@ Only a value that has been proposed can be chosen
@ Only a single value is chosen

@ A process never learns that a value has been
chosen unless it has been

LIVENESS

@ Some proposed value is eventually chosen

@ If a value is chosen, a process eventually learns it



The Players

@ Proposers
@ Acceptors

@ Learners



Choosing a value

e Use a single
/@ acceptor



What if
the acceptor fails?

@ 6 IS chosen!

@ Choose only when a

of acceptors accepts

@ “large enough” set
; /
\>

@ Using a majority set
@ guarantees that at
most one value is

chosen



Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen!
@ First requirement:

Pl: An acceptor must accept the first
proposal that It receives



Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen!
@ First requirement:

Pl: An acceptor must accept the first
proposal that It receives

@ ..but what if we have multiple proposers, each
proposing a different value?



Pl + multiple proposers

No value is chosen!

..



Handling multiple proposals

@ Acceptors must (be able to) accept more than
one proposal

@ To Keep track of different proposals, assign a
natural number to each proposal

O A proposal is then a pair (psn, value)
0 Different proposals have different psn

DO A proposal is chosen when it has been
accepted by a majority of acceptors

DO A value is chosen when a single proposal
with that value has been chosen



Choosing a unique value

@ We need to guarantee that all chosen
proposals result in choosing the same value

@ We introduce a second requirement (by
induction on the proposal number):

P2. If a proposal with value v is chosen,
then every higher-numbered proposal that
IS chosen has value v

which can be satisfied by:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
accepted by any acceptor has value v



What about P17

How does it know
it should not accept? @ Do we still need P1?

a YES, to ensure that some
/ proposal is accepted
/ E @® How well do P1 and P2a

play together?

\ Asynchrony is a problem...
(1,6) Y Y P

6 Is chosen!



Another take on P2

@ Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal issued
by any proposer has value v



Implementing P2 (I)

P2b: If a proposal with value v is chosen, then every higher-

numbered proposal issued by any proposer has value v
Suppose a proposer p wants to issue a proposal
numbered n. What value should p propose?

@ If (n’,v) with n’ < n is chosen, then in every
majority set S of acceptors at least one acceptor
has accepted (n’,v)...

@ ..so, if there is a majority set S where no acceptor
has accepted (or will accept) a proposal with
number less than n, then p can propose any value



Implementing P2 (II)

P2b: If a proposal with value v is chosen, then every

higher-numbered proposal issued by any proposer has value
v

What if for all S some acceptor ends up
accepting a pair (n’,v) with n’ < n?

Claim: p should propose the value of the highest
numbered proposal among all accepted proposals
numbered less than n

Proof: By induction on the number of proposals
issued after a proposal is chosen



Implementing P2 (III)

P2b: If a proposal with value v is chosen, then every
higher-numbered proposal issued by any proposer has value
v

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of a
majority of acceptors such that either:

0 no acceptor in S has accepted any proposal numbered
less than n, or

D U is the value of the highest-numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S



