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Logistics notes

Problem set 1 posted…real soon now 

- due next Friday, 9pm 

Lab 1 due 9pm 

Question experiment



Today

More Primary/Backup 

Intro to logical clocks



Primary/Backup Architecture

Client Primary BackupOps Ops

View server
Who is primary?

Ping Ping



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer
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Split brain

1: A, B

A is still up, but can’t reach view server

2: C, D

C learns it is promoted to primary 
A still thinks it is primary
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1. Missing writes

1: A, B

Client writes to A, receives response 
A crashes before writing to B

2: B, C

Client reads from B 
Write is missing



2. “Fast” Reads?

Does the primary need to forward reads to the 
backup? 

(This is a common “optimization”)



Stale reads

1: A, B

A is still up, but can’t reach view server

2: B, C

Client 1 writes to B 
Client 2 reads from A 
A returns outdated value



Reads vs. writes

Reads treated as state machine operations too 

But: can be executed more than once 

RPC library can handle them differently
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Old messages

1: A, B A forwards a request… 

2: B, C

3: C, A 

4: A, B 

Which arrives here
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Inconsistencies

1: A, B

2: B, C

Outdated client sends request to A 
A shouldn’t respond!

2: B, A
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Inconsistencies

1: A, B

A starts sending state to B 
Client writes to A 
A forwards op to B 
A sends rest of state to B
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Progress

Are there cases when the system can’t make further 
progress (i.e. process new client requests)?



Progress

- View server fails 

- Network fails entirely (hard to get around this one) 

- Clients can’t reach primary but it can ping VS 

- No backup and primary fails 

- Primary fails before ack’ing view change



State transfer and RPCs

State transfer must include RPC data



Duplicate writes

1: A, B

Client writes to A 
A forwards to B 
A replies to client 
Reply is dropped

2: B, C

B transfers state to C, crashes

3: C, D

Client resends write. Duplicated!



One more corner case

1: A, B

View server stops hearing from A 
A and B, and clients, can still communicate

2: B, C

B hasn’t heard from view server 
Client in view 1 sends a request to A 
What happens? 
Client in view 2 sends a request to B 
What happens?



Logical time

Distinct from physical time 

How can we order events at different nodes? 

What does it mean for an event to happen before 
another one?



Happens-before

1. Happens at same location, earlier 

2. Transmission before receipt



Space-time diagrams

S1 S2 S3

A

B

send M
recv M

C
send M’

recv M’

D



Lamport clocks

Idea: timestamp on each event 

When to advance timestamp, and to what? 

How to implement a lock using logical clocks? 

Tune in next time




