
More Primary/Backup
Doug Woos



Logistics notes

Problem set 1 posted…real soon now 

- due next Friday, 9pm 

Lab 1 due 9pm 

Question experiment



Today

More Primary/Backup 

Intro to logical clocks



Primary/Backup Architecture

Client Primary BackupOps Ops

View server
Who is primary?

Ping Ping



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Split brain

1: A, B

A is still up, but can’t reach view server

2: C, D

C learns it is promoted to primary 
A still thinks it is primary



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



1. Missing writes

1: A, B

Client writes to A, receives response 
A crashes before writing to B

2: B, C

Client reads from B 
Write is missing



2. “Fast” Reads?

Does the primary need to forward reads to the 
backup? 

(This is a common “optimization”)



Stale reads

1: A, B

A is still up, but can’t reach view server

2: B, C

Client 1 writes to B 
Client 2 reads from A 
A returns outdated value



Reads vs. writes

Reads treated as state machine operations too 

But: can be executed more than once 

RPC library can handle them differently



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Old messages

1: A, B A forwards a request… 

2: B, C

3: C, A 

4: A, B 

Which arrives here



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Inconsistencies

1: A, B

2: B, C

Outdated client sends request to A 
A shouldn’t respond!

2: B, A



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Inconsistencies

1: A, B

A starts sending state to B 
Client writes to A 
A forwards op to B 
A sends rest of state to B



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Progress

Are there cases when the system can’t make further 
progress (i.e. process new client requests)?



Progress

- View server fails 

- Network fails entirely (hard to get around this one) 

- Clients can’t reach primary but it can ping VS 

- No backup and primary fails 

- Primary fails before ack’ing view change



State transfer and RPCs

State transfer must include RPC data



Duplicate writes

1: A, B

Client writes to A 
A forwards to B 
A replies to client 
Reply is dropped

2: B, C

B transfers state to C, crashes

3: C, D

Client resends write. Duplicated!



One more corner case

1: A, B

View server stops hearing from A 
A and B, and clients, can still communicate

2: B, C

B hasn’t heard from view server 
Client in view 1 sends a request to A 
What happens? 
Client in view 2 sends a request to B 
What happens?



Logical time

Distinct from physical time 

How can we order events at different nodes? 

What does it mean for an event to happen before 
another one?



Happens-before

1. Happens at same location, earlier 

2. Transmission before receipt



Space-time diagrams

S1 S2 S3

A

B

send M
recv M

C
send M’

recv M’

D



Lamport clocks

Idea: timestamp on each event 

When to advance timestamp, and to what? 

How to implement a lock using logical clocks? 

Tune in next time




