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Logistics notes

Lab 3a due tonight 

Friday’s class is in GWN 201!



Next few papers

Three real-world systems from Google 

Chubby: coordination service 

BigTable: storage for structured data 

GFS: storage for bulk data 

All highly influential, have open-source clones 

Chubby -> Zookeeper, etcd 

BigTable -> HBase, Cassandra, other NoSQL stores 

GFS -> HDFS



Chubby

Distributed coordination service 

Goal: allow client applications to synchronize and 
manage dynamic configuration state 

Intuition: only some parts of an app need consensus! 

- Lab 2: Highly available view service 

- Master election in a distributed FS (e.g. GFS) 

- Metadata for sharded services 

Implementation: (Multi-)Paxos SMR



Why Chubby?

Many applications need coordination (locking, 
metadata, etc). 

Every sufficiently complicated distributed system 
contains an ad-hoc, informally-specified, bug-
ridden, slow implementation of Paxos 

Paxos is a known good solution 

(Multi-)Paxos is hard to implement and use



How to do consensus as a service
Chubby provides: 

- Small files 

- Locking 

- “Sequencers” 

Filesystem-like API 

- Open, Close, Poison 

- GetContents, SetContents, Delete 

- Acquire, TryAcquire, Release 

- GetSequencer, SetSequencer, CheckSequencer
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Example: primary election

x = Open(“/ls/cell/service/primary")
if (TryAcquire(x) == success) {
  // I'm the primary, tell everyone
  SetContents(x, my-address)
} else {
  // I'm not the primary, find out who is
  primary = GetContents(x)
  // also set up notifications 
  // in case the primary changes
}
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Why a lock service?

One option: a Paxos library (these exist) 

Why a service: 

- Easier to add to existing systems 

- Want to store small amounts of data, e.g. names,  
externally (for clients) 

- Developers don’t understand Paxos! 

- As it turns out, they don’t understand locks either 

- Can have fewer app servers



Performance

Not highly optimized! 

Later (and last Thursday): how to do Paxos, fast 

Paxos implementation: ~1000 ops/s 

Initially, needed to handle ~5000 ops/s 

How to scale? 

- Adding nodes to Paxos group?



Performance
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Batching

Master accumulates requests from many clients 

Does one round of Paxos to commit all to log 

Big throughput gains at expense of latency 

- Classic systems trick (e.g. disks) 

- Ubiquitous in systems w/o latency requirements



Partitioning

Run multiple Paxos groups, each responsible for 
different keys 

Different replicas master in some, replica in others 

Common in practice 

- Alternative: Egalitarian Paxos



Leases
Most requests are reads 

Want to avoid communication on reads 

- Communication not needed for durability 

- Just need to ensure master hasn’t changed 

Optimization: master gets lease, renewed while up 

- Chubby: ~10s 

- Master can process reads alone if holding lease 

- If master fails, need to wait 10s before new master 
can respond to requests (why?) 



Caching

Chubby uses client caching heavily 

- file data 

- file metadata (incl. non-existence!) 

Writ-through, strong leases (+ invalidations) 

- Master tracks which clients might have file cached 

- Sends invalidations on update 

- Caches expire automatically after 12s



Proxies

KeepAlives and invalidations are a huge % of load 

Use proxies to track state for groups of clients 

- To master, proxies act exactly like clients 

- To clients, proxies act exactly like master 

Client Proxy Master



Handling failure

Replica failure: no problem 

Master failure 

Client failure



Master failure

Client stops hearing from master 

- Notifies application (stop sending new requests!) 

- Clears cache 

- “grace period” begins (wait for election before 
giving up on Chubby entirely) 

- If new master found, continue 

- Otherwise, throw an error to the application



Master failure

Meanwhile, in the Chubby cell… 

If master has failed: 

- Do leader election (PMMC) 

- Rebuild state from other replicas + clients 

- Wait for old lease to expire!



Performance

~50k clients per cell 

~20k files 

- Majority are open at any given time 

- Most < 1k 

- All < 256k (hard limit—why?) 

2k RPCs/s 

- 93% KeepAlives! 

All of these numbers probably bigger now!



Name service

Surprising dominant use case: name servers! 

Problems with DNS 

- Designed for web, where slow propagation OK 

- Weak leases 

- Performance bad (see Ousterhout!) if TTLs are low 

Chubby: decent performance, strongly consistent 

Why not use Chubby on the web?



Discussion
Most errors in failover code 

- Netflix: Chaos Monkey 

Chubby metadata stored in Chubby itself 

Advisory vs. Mandatory locks 

Importance of programmer convenience 

- Locks—familiar, but programmers get it wrong! 

How much are clients trusted? 

Note: interesting paper called “Paxos made live” 

- Making Paxos work within Chubby




