Dynamo

Tom Anderson

QOutline

Last two weeks: external consistency
— Chubby: coordination service
— BigTable: scalable storage of structured data
— GFS: large-scale storage for bulk data
— Spanner: Multi-key, multi-data center NoSQL
Today: eventual consistency
— Dynamo: Eventually consistent NoSQL

3/4/16



3/4/16

Motivation: Fast Available Writes

Shopping cart: always allow customer to buy
Write availability with external consistency?

— Delay writes whenever quorum is down

Werite availability across data centers?

— what if network access is partitioned?
Performance/throughput

— External consistency requires (logically) single copy
— Either control of the copy pings around network

— Or all updates must be streamed to the single copy
Multi key operations even worse

— need to coordinate updates across keys

Possible Solutions

* Snapshot reads: allow reads on consistent but
slightly stale version of data
— Improves write performance by decoupling reads
— Example: GFS returns consistent prefix of file
— Example: Spanner snapshot reads

« Commutativity: if operations can be redesigned
to yield same result regardless of order
— Example: UNIX file descriptor is “next unused slot”
— Could be: “any unused slot”




Possible Solutions

e Post-hoc resolution

— use logs, version vectors to detect when

reconciliation is needed

— Application-specific merge of different versions

* Git, Dynamo, ...

Dynamo Goals

Dynamo design:
Replication within, across a small number of data centers

Limited scale (100s): every service uses a Dynamo copy

Goals:

Improve 99.9th percentile of delay

Handle constant server failures

Handle "data centers being destroyed by tornadoes”
Data "always writeable"

3/4/16



Implications

 Availability => replicas
* Always writeable => allow writes to bypass
replicas when down or partitioned

* Always writeable => no paxos, no primary, no
leases

* Multiple data centers => partitions likely

* Always writeable + replicas + partitions =>
conflicting versions

Eventual Consistency

Eventual consistency among versions
— Accept writes at any replica
— Allow divergent replicas
— Allow reads to see stale data
— Allow reads to see multiple versions
— Anti-entropy: store multiple versions at each replica
— Resolve conflicts when failures go away

3/4/16



3/4/16

Eventual Consistency Downsides

There can be several “latest” versions

Read can yield any (or all) versions

Application must merge and resolve conflicts

No atomic operations
— No test-and-set
— No de-friend and dis

Dynamo API: Simple Key Value

» get(k) -> set of (value, "context”)
— context is version info
* put(k, v, context)

— context indicates which versions this put
supersedes




Where Should Data Be Placed?

Goals:

 Balance load, including as servers join/leave
* Replication for fault tolerance

* Find keys, including when there are failures
* Encourage put/get to see each other

* Avoid conflicting versions spread over many
servers

Consistent Hashing

* Node ID assigned at random
— Virtual nodes for better load balancing
— All node IDs known to all clients
* Key ID = hash(key)
e Coordinator: successor of key
— clients send puts/gets to coordinator
— join/leave only affects neighbors
» Replicas at successors of coordinator
— Coordinator forwards puts/gets to replicas

3/4/16



3/4/16

Consistent Hashing
Multiple Data Center Version

Clients know all server IDs, locations

Hash(key) determines “preference list”

Ex: first successor in each data center
— Vs. first k successors in one data center

Clients go directly to closest replicas

Anti-entropy pushes version reconciliation

Node Unreachable

When a node is unreachable, what should we do?

— if really dead, need to make new copies to maintain
fault-tolerance

— if really dead, want to avoid repeated waiting
— if just temporary, wasteful to make new copies




Sloppy Quorum

* Do not block waiting for unreachable nodes
* Want get to see most recent put (with high
probability)
* Quorum:R+W >N
— Don’t wait forall N
— Rand W will (hormally) overlap
* Nis first N reachable nodes in preference list
* Each node pings to keep estimate of up/down

* "sloppy" quorum -- nodes may disagree on who is
reachable

Coordinator/Client

Coordinator or client handling put/get:
— send put/get to first N reachable nodes, in parallel
— put: wait for W replies
— get: wait for R replies
With no failures
— get will see all recent versions
With failures
— writes completely quickly
— reads eventually see?

3/4/16



Failure Corner Cases

What if a put() leaves data far down the ring?

After failures repaired, new data is beyond N

— server remembers a "hint" about where data
belongs

— forwards once real home is reachable

Also periodic "merkle tree" sync of whole DB

Multiple Versions

How can multiple versions arise?

— Maybe a node missed the latest write due to
network problem

— So it has old data, should be superseded

3/4/16



How can conflicting versions arise?

Network partition => different updates sent to
different servers

— Example: Shopping basket with item X

— Partition 1 removes X, yielding "”

— Partition 2 adds Y, yielding "X Y”
Neither copy is newer than the other -- they
conflict

— After partition heals, client read gets both versions,
because a quorum read (may!) see both

Detecting conflicts: Version Vectors

Example versions at servers a, b:
[a:1]
[a:1,b:2]

Version vector indicates one supersedes the other
Dynamo automatically drops [a:1]

3/4/16

10



Another Example

[a:1]
[a:1,b:2]
[a:2]

Client must merge

Concurrency and Versions

What happens if two clients concurrently write?
— e.g. toincrement a counter
— Each does read-modify-write
— So they both see the same initial version

Will the two versions have conflicting version
vectors?

3/4/16

11



Version Vector Size

Dynamo deletes least-recently-updated entry if
version vector has > 10 elements
Impact of deleting a VV entry?

— won't realize one version subsumes another

- put@b: [b:4]

— put@a: [a:3, b:4]

— forget b:4: [a:3]

— now if you sync with [b:4], merge is required
Hopefully never happens

Is Merge Always Possible?

* Suppose we're keeping a counter, x

x=10, then partition

incremented by 5 to x=15 in both partitions

After heal, client sees two versions, both x=15

What's the correct merge result?

3/4/16

12



Tail Latency

Does replication help limit 99.9th percentile
delay?
Bad news:

— Some replicas may be at distant data centers

— consulting multiple nodes for get/put means at
least one will be slow

Good news:
— Dynamo only waits for W or R out of N
— cuts off tail of delay distribution

Flexible N-R-W

What do you get by varying N-R-W?
* 3-2-2 :reasonably fast R/W, reasonably durable

3-3-1:fast W, slow R, not very durable
3-1-3 : fast R, slow W, durable

3-3-3: 777

3-1-1:777?

3/4/16

13



