
2/18/16	

1	

BigTable	

Tom	
 Anderson	

(slides	
 from	
 Jeff	
 Dean	
 and	
 Dan	
 Ports)	

Outline	

Last	
 Ame:	

– Chubby:	
 Paxos	
 based	
 lock	
 server,	
 service	

coordinaAon,	
 dynamic	
 configuraAon	
 manager	

	

Today/Monday:	

– BigTable:	
 scalable	
 storage	
 of	
 structured	
 data	

– GFS:	
 large-­‐scale	
 storage	
 for	
 bulk	
 data	

2/18/16	

2	

BigTable Motivation

•  Lots of (semi-)structured data at Google
–  URLs:

•  Contents, crawl metadata, links, anchors, pagerank,
…

–  Per-user data:
•  User preference settings, recent queries/search

results, …
–  Geographic locations:

•  Physical entities (shops, restaurants, etc.), roads,
satellite image data, user annotations, …

•  Scale is large
–  Billions of URLs, many versions/page (~20K/

version)
–  Hundreds of millions of users, thousands of q/sec
–  100TB+ of satellite image data

BigTable Goals

•  Want asynchronous processes to be continuously
updating different pieces of data
–  Want access to most current data at any time

•  Need to support:

–  Very high read/write rates (millions of ops per
second)

–  Efficient scans over all or interesting subsets of data
–  Efficient joins of large one-to-one and one-to-many

datasets

•  Often want to examine data changes over time

–  E.g. Contents of a web page over multiple crawls

2/18/16	

3	

BigTable

•  Distributed multi-level map
–  With an interesting data model

•  Fault-tolerant, persistent
•  Scalable
–  Thousands of servers
–  Terabytes of in-memory data
–  Petabyte of disk-based data
–  Millions of reads/writes per second, efficient scans

•  Self-managing
–  Servers can be added/removed dynamically
–  Servers adjust to load imbalance

Background: Building Blocks

Building blocks:
•  Google File System (GFS): Raw storage
•  Scheduler: schedules jobs onto machines
•  Lock service: distributed lock manager

–  Also can reliably hold tiny files (100s of bytes) w/ high
availability

•  MapReduce: simplified large-scale data processing

BigTable uses of building blocks:
•  GFS: stores persistent state
•  Scheduler: schedules jobs involved in BigTable

serving
•  Lock service: master election, location

bootstrapping
•  MapReduce: often used to read/write BigTable

data

2/18/16	

4	

Typical Cluster

Cluster Scheduling Master Lock Service GFS Master

Machine 1

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 2

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 3

Scheduler
Slave

GFS
Chunkserver

Linux

Single Task

BigTable
Server

BigTable
Server BigTable Master

Basic Data Model

•  Distributed multi-dimensional sparse map
 (row, column, timestamp) ! cell contents

•  Good match for most of our applications

…
…

“<html>…”

t1
t2

t3
www.cnn.com

ROWS

COLUMNS

TIMESTAMPS

“contents”

2/18/16	

5	

Rows

•  Name is an arbitrary string
– Access to data in a row is atomic
– Row creation is implicit upon storing data

•  Rows ordered lexicographically
– Rows close together lexicographically

usually on one or a small number of
machines

Tablets

•  Large tables broken into tablets at row
boundaries
–  Tablet holds contiguous range of rows

•  Clients can often choose row keys to achieve
locality

–  Aim for ~100MB to 200MB of data per tablet
•  Serving machine responsible for ~100

tablets
–  Fast recovery:

•  100 machines each pick up 1 tablet from failed
machine

–  Fine-grained load balancing
•  Migrate tablets away from overloaded machine
•  Master makes load-balancing decisions

2/18/16	

6	

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

…

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

Yahoo.com/kids.html

Yahoo.com/kids.html?D

…

…

2/18/16	

7	

System Structure

Cluster Scheduling Master

handles failover, monitoring

GFS

holds tablet data, logs

Lock service

holds metadata,
handles master-election

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable master

performs metadata ops,
load balancing

Bigtable cell
Bigtable client
Bigtable client

library

Open()

QuesAons	

	

The	
 BigTable	
 master	
 are	
 not	
 replicated	
 for	

correctness/availability.	
 	
 Why?	

–  Hint:	
 It	
 is	
 replicated	
 as	
 a	
 performance	
 opAmizaAon	

The	
 tablet	
 servers	
 are	
 not	
 replicated	
 for	

correctness/availability.	
 	
 Why?	

2/18/16	

8	

Fault	
 tolerance	

•  If	
 a	
 tablet	
 server	
 fails	
 (while	
 storing	
 ~100	
 tablets)	

–  reassign	
 each	
 tablet	
 to	
 another	
 machine	

–  so	
 100	
 machines	
 pick	
 up	
 just	
 1	
 tablet	
 each	

–  tablet	
 SSTables	
 &	
 log	
 are	
 in	
 GFS	

•  If	
 the	
 master	
 fails	

–  acquire	
 lock	
 from	
 Chubby	
 to	
 elect	
 new	
 master	

–  read	
 config	
 data	
 from	
 Chubby	

–  contact	
 all	
 tablet	
 servers	
 to	
 ask	
 what	
 they’re	
 responsible	
 for	

Is	
 BigTable	
 ACID?	

•  Durability	
 and	
 atomicity:	
 via	
 GFS	

•  Strong	
 consistency:	
 operaAons	
 processed	
 by	
 a	

single	
 server	
 in	
 order	

•  Isolated	
 transacAons	
 within	
 a	
 single	
 key	

•  MulA-­‐key	
 transacAons	
 added	
 in	
 Spanner	

2/18/16	

9	

Locating Tablets

•  Since tablets move around from server to
server, given a row, how do clients find the
right machine ?
–  Need to find tablet whose row range covers the

target row
•  Could use consistent hashing
–  Would spread related data across multiple tablets

•  Could use the BigTable master
–  Central server would be bottleneck in large system

•  Instead: store special tables containing
tablet location info in BigTable cell itself

Locating Tablets (cont.)

•  Our approach: 3-level hierarchical lookup scheme for tablets
–  Location is ip:port of relevant server
–  1st level: bootstrapped from lock server, points to owner of META0
–  2nd level: Uses META0 data to find owner of appropriate META1 tablet
–  3rd level: META1 table holds locations of tablets of all other tables

•  META1 table itself can be split into multiple tablets

2/18/16	

10	

Tablet Representation

•  SSTable: Immutable on-disk ordered map from stringàstring
•  String keys: <row, column, timestamp> triples

Write buffer in memory
(random-access) Append-only log on GFS

SSTable on
GFS

SSTable on
GFS

SSTable on
GFS

(mmap)

Tablet

Write

Read

Compactions

•  Tablet state represented as set of immutable compacted
SSTable files, plus tail of log (buffered in memory)

•  Minor compaction:

–  When in-memory state fills up, pick tablet with most data
and write contents to SSTables stored in GFS
•  Separate file for each locality group for each tablet

•  Major compaction:

–  Periodically compact all SSTables for tablet into new base
SSTable on GFS
•  Storage reclaimed from deletions at this point

2/18/16	

11	

Columns

•  Columns have two-level name structure:
•  Family:optional_qualifier

•  Column family
–  Unit of access control
–  Has associated type information

•  Qualifier gives unbounded columns
–  Additional level of indexing, if desired

“CNN homepage”

“anchor:cnnsi.com”

“…” cnn.com

“contents:” “anchor:stanford.edu”

“CNN”

Timestamps

•  Used to store different versions of data in a cell
–  New writes default to current time, but timestamps for

writes can also be set explicitly by clients

•  Lookup options:

–  “Return most recent K values”
–  “Return all values in timestamp range (or all values)”

•  Column families can be marked w/ attributes:

–  “Only retain most recent K values in a cell”
–  “Keep values until they are older than K seconds”

2/18/16	

12	

API

•  Metadata operations
–  Create/delete tables, column families, change

metadata
•  Writes (atomic)
–  Set(): write cells in a row
–  DeleteCells(): delete cells in a row
–  DeleteRow(): delete all cells in a row

•  Reads
–  Scanner: read arbitrary cells in a bigtable

•  Each row read is atomic
•  Can restrict returned rows to a particular range
•  Can ask for just data from 1 row, all rows, etc.
•  Can ask for all columns, just certain column families, or

specific columns

Shared Logs

•  Designed for 1M tablets, 1000s of tablet servers
–  1M logs being simultaneously written performs badly

•  Solution: shared logs
–  Write log file per tablet server instead of per tablet

•  Updates for many tablets co-mingled in same file

–  Start new log chunks every so often (64MB)

•  Problem: during recovery, server needs to read log
data to apply mutations for a tablet
–  Lots of wasted I/O if lots of machines need to read data for

many tablets from same log chunk

2/18/16	

13	

Shared Log Recovery

Recovery:
•  Servers inform master of log chunks they

need to read
•  Master aggregates and orchestrates sorting of

needed chunks
–  Assigns log chunks to be sorted to different tablet

servers
–  Servers sort chunks by tablet, writes sorted data

to local disk
•  Other tablet servers ask master which servers

have sorted chunks they need
•  Tablet servers issue direct RPCs to peer tablet

servers to read sorted data for its tablets

Compression
•  Many opportunities for compression
–  Similar values in the same row/column at different

timestamps
–  Similar values in different columns
–  Similar values across adjacent rows

•  Within each SSTable for a locality group, encode

compressed blocks
–  Keep blocks small for random access (~64KB

compressed data)
–  Exploit fact that many values very similar
–  Needs to be low CPU cost for encoding/decoding

2/18/16	

14	

Compression Effectiveness
•  Experiment: store contents for 2.1B page crawl in BigTable instance

–  Key: URL of pages, with host-name portion reversed
•  com.cnn.www/index.html:http

–  Groups pages from same site together
•  Good for compression (neighboring rows tend to have similar contents)
•  Good for clients: efficient to scan over all pages on a web site

•  One compression strategy: gzip each page: ~28% bytes remaining
•  BigTable: BMDiff + Zippy

Type Count(B) Space(TB) Compressed %remaining
Web contents 2.1 45.1 4.2 9.2
Links 1.8 11.2 1.6 13.9
Anchors 126.3 22.8 2.9 12.7

Summary	
 of	
 BigTable	
 Key	
 Ideas	

Unstructured	
 key-­‐value	
 table	
 data	

–  No	
 need	
 for	
 having	
 a	
 schema	
 in	
 advance	

–  instead	
 create	
 columns	
 when	
 needed	

Versioned	
 data,	
 with	
 key-­‐specific	
 garbage	
 collecAon	

Maintain	
 data	
 locality	
 on	
 same	
 tablet	

Instead	
 of	
 consistent	
 hashing,	
 reconfigure	
 tablet	

boundaries	
 for	
 load	
 balancing	

Tablets	
 for	
 lookup:	
 key	
 -­‐>	
 tablet	

Efficient	
 updates	
 using	
 log	
 structure	
 (store	
 deltas)	

2/18/16	

15	

BigTable	
 in	
 retrospect	

•  Definitely	
 a	
 useful,	
 scalable	
 system!	

•  SAll	
 in	
 use	
 at	
 Google,	
 moAvated	
 lots	
 of	
 NoSQL	
 DBs	

•  Biggest	
 mistake	
 in	
 design	
 (per	
 Jeff	
 Dean,	
 Google):	

not	
 supporAng	
 distributed	
 transacAons!	

– became	
 really	
 important	
 w/	
 incremental	
 updates	

– users	
 wanted	
 them,	
 implemented	
 themselves,	
 	

omen	
 incorrectly!	

Megastore	
 MoAvaAon	

•  Many	
 applicaAons	
 need	
 transacAons	
 that	
 span	

mulAple	
 rows	

– Examples:	
 gmail,	
 google+,	
 picasa,	
 …	

•  Key-­‐value	
 store	
 that	
 spans	
 mulAple	
 data	
 centers	

– Fast	
 local	
 reads	

– At	
 cost	
 of	
 slower	
 writes	

2/18/16	

16	

Megastore	

•  Replicate	
 data	
 using	
 BigTable	
 as	
 underlying	

key-­‐value	
 store	

– BigTable	
 copy	
 per	
 data	
 center	

•  Two	
 phase	
 commit	
 for	
 mulA-­‐key	
 transacAons	

– Store	
 2pc	
 log	
 as	
 “column”	
 in	
 BigTable	

•  Fast	
 reads:	
 in	
 normal	
 case,	
 read	
 lease	

provided	
 to	
 all	
 data	
 centers	

•  Slow	
 writes:	
 revoke	
 read	
 leases	
 from	
 all	
 data	

centers	
 before	
 performing	
 write	

