BigTable

Tom Anderson
(slides from Jeff Dean and Dan Ports)

QOutline

Last time:

— Chubby: Paxos based lock server, service
coordination, dynamic configuration manager

Today/Monday:
— BigTable: scalable storage of structured data
— GFS: large-scale storage for bulk data

2/18/16

BigTable Motivation

+ Lots of (semi-)structured data at Google
— URLs:

« Contents, crawl metadata, links, anchors, pagerank,

- Per:ﬁser data:

« User preference settings, recent queries/search
results, ...

— Geographic locations:

* Physical entities (shops, restaurants, etc.), roads,
satellite image data, user annotations, ...

+ Scale is large

— Billions of URLs, many versions/page (~20K/
version)

— Hundreds of millions of users, thousands of g/sec
— 100TB+ of satellite image data

BigTable Goals

« Want asynchronous processes to be continuously
updating different pieces of data

— Want access to most current data at any time

» Need to support:

— Very high read/write rates (millions of ops per
second();

— Efficient scans over all or interesting subsets of data

— Efficient joins of large one-to-one and one-to-many
datasets

+ Often want to examine data changes over time
— E.g. Contents of a web page over multiple crawls

2/18/16

BigTable

Distributed multi-level map

— With an interesting data model
Fault-tolerant, persistent

Scalable

— Thousands of servers

— Terabytes of in-memory data

— Petabyte of disk-based data

— Millions of reads/writes per second, efficient scans
Self-managing

— Servers can be added/removed dynamically
— Servers adjust to load imbalance

Background: Building Blocks

Building blocks:
* Google File System (GFS): Raw storage
« Scheduler: schedules jobs onto machines

* Lock service: distributed lock manager

— Also can reliably hold tiny files (100s of bytes) w/ high
availability

+ MapReduce: simplified large-scale data processing

BigTable uses of building blocks:
« GFS: stores persistent state

+ Scheduler: schedules jobs involved in BigTable
serving

+ Lock service: master election, location
bootstrapping

. ‘I;IatpReduce: often used to read/write BigTable
ata

2/18/16

Typical Cluster

777

Cluster Scheduling Master i Lock Service GFS Master
Machine 1 Machine 2 Machine 3
P BigTable
User : P g
Task Bé%??:rl N Server BigTable Master
| P User
’ Single Task ‘ Task
 [Scheduler|| GFs | | [Scheduler]| GFS | i [Scheduler|[GFs |
‘ Slave || Chunkserver| | ! Slave || Chunkserver| | | Slave || Chunkserver| :
’ Linux ‘ ’ Linux ‘ ’ Linux

Basic Data Model

« Distributed multi-dimensional sparse map
lumn, timest. 2.6l
(row, column, times a/ﬁp) c? @/ contents

ROWS e L
: : tl

www.cnn.com

=12
: 3 TIMESTAMPS

,,

« Good match for most of our applications

2/18/16

2/18/16

Rows

« Name is an arbitrary string
— Access to data in a row is atomic
— Row creation is implicit upon storing data

« Rows ordered lexicographically

— Rows close together lexicographically
usually on one or a small number of
machines

Tablets

« Large tables broken into tablets at row

boundaries

— Tablet holds contiguous range of rows
+ Clients can often choose row keys to achieve
locality

— Aim for ~100MB to 200MB of data per tablet

 Serving machine responsible for ~100
tablets

— Fast recovery:
+ 100 machines each pick up 1 tablet from failed
machine
— Fine-grained load balancing
+ Migrate tablets away from overloaded machine
» Master makes load-balancing decisions

2/18/16

“language” “contents”
| |
aaa.com
chn.com EN “<html>...”
cnn.com/sports.html
TABLETS
Website.com
Zuppa.com/menu.html
“language” “contents”
| |
aaa.com
cnn.com EN “<html>...”
cnn.com/sports.html
TABLETS
Website.com
Yahoo.com/kids.html l | |
Yahoo.com/kids.html?D !
Zuppa.com/menu.html

System Structure

Bigtable client

Bigtable cell

Bigtable client
| Bigtable master |‘7 library

performs metadata ops, Open()
load balancing

| Bigtable tablet server | Bigtable tablet server | | Bigtable tablet scr\'cr|

serves data serves data serves data

bluster Scheduling Masterl

handles failover, monitoring holds tablet data, logs holds metadata,
handles master-election

Questions

The BigTable master are not replicated for
correctness/availability. Why?

— Hint: It is replicated as a performance optimization

The tablet servers are not replicated for
correctness/availability. Why?

2/18/16

2/18/16

Fault tolerance

* If a tablet server fails (while storing ~100 tablets)
— reassign each tablet to another machine
— 50 100 machines pick up just 1 tablet each
— tablet SSTables & log are in GFS

* If the master fails
— acquire lock from Chubby to elect new master
— read config data from Chubby

— contact all tablet servers to ask what they’re responsible for

Is BigTable ACID?

Durability and atomicity: via GFS

Strong consistency: operations processed by a
single server in order

Isolated transactions within a single key
Multi-key transactions added in Spanner

Locating Tablets

« Since tablets move around from server to
server, given a row, how do clients find the

right machine ?

— Need to find tablet whose row range covers the
target row

» Could use consistent hashing

— Would spread related data across multiple tablets
 Could use the BigTable master

— Central server would be bottleneck in large system

+ Instead: store special tables contai_nin?
tablet location info in BigTable cell itself

Locating Tablets (cont.)

* Our approach: 3-level hierarchical lookup scheme for tablets
— Location is jp:port of relevant server
— 1st|evel: bootstrapped from lock server, points to owner of METAQ
— 2nd |evel: Uses METAO data to find owner of appropriate METAL1 tablet

— 3 level: METAL1 table holds locations of tablets of all other tables
» METAL table itself can be split into multiple tablets

Other
METADATA
taplats

Fgure 4: Tablet location hierarchy.

2/18/16

Tablet Representation

Read

" Write

SSTable on SSTable on SSTable on
GFS
GFS
(mmap)
Tablet

+ SSTable: Immutable on-disk ordered map from string—>string
» String keys: <row, column, timestamp> triples

Compactions

« Tablet state represented as set of immutable compacted
SSTable files, plus tail of log (buffered in memory)

* Minor compaction:

— When in-memory state fills up, pick tablet with most data
and write contents to SSTables stored in GFS

» Separate file for each locality group for each tablet

» Major compaction:

— Periodically compact all SSTables for tablet into new base
SSTable on GFS

« Storage reclaimed from deletions at this point

2/18/16

10

Columns

“contents:” “anchor:cnnsi.com” “anchor:stanford.edu”
cnn.com _[T . L -
- “. “CNN homepage “CNN

» Columns have two-level name structure:
 Family:optional_qualifier
« Column family
— Unit of access control
— Has associated type information
« Qualifier gives unbounded columns
— Additional level of indexing, if desired

Timestamps

« Used to store different versions of data in a cell

— New writes default to current time, but timestamps for
writes can also be set explicitly by clients

 Lookup options:
— "Return most recent K values”
— "Return all values in timestamp range (or all values)”

« Column families can be marked w/ attributes:
— "Only retain most recent K values in a cell”
— "Keep values until they are older than K seconds”

2/18/16

11

API

» Metadata operations
— Create/delete tables, column families, change
metadata
» Writes (atomic)
— Set(): write cells in a row
— DeleteCells(): delete cells in a row
— DeleteRow(): delete all cells in a row

» Reads

— Scanner: read arbitrary cells in a bigtable
» Each row read is atomic
« Can restrict returned rows to a particular range
+ Can ask for just data from 1 row, all rows, etc.
+ Can ask for all columns, just certain column families, or
specific columns

Shared Logs

» Designed for 1M tablets, 1000s of tablet servers
— 1M logs being simultaneously written performs badly

* Solution: shared logs
— Write log file per tablet server instead of per tablet
+ Updates for many tablets co-mingled in same file
— Start new log chunks every so often (64MB)

» Problem: during recovery, server needs to read log
data to apply mutations for a tablet

— Lots of wasted I/0O if lots of machines need to read data for
many tablets from same log chunk

2/18/16

12

2/18/16

Shared Log Recovery

Recovery:

 Servers inform master of log chunks they
need to read

» Master a%gregates and orchestrates sorting of
needed chunks

— Assigns log chunks to be sorted to different tablet
servers

— Servers sort chunks by tablet, writes sorted data
to local disk
» Other tablet servers ask master which servers
have sorted chunks they need

+ Tablet servers issue direct RPCs to peer tablet
servers to read sorted data for its tablets

Compression

« Many opportunities for compression

— Similar values in the same row/column at different
timestamps

— Similar values in different columns
— Similar values across adjacent rows

« Within each SSTable for a locality group, encode
compressed blocks

— Keep blocks small for random access (~64KB
compressed data)

— Exploit fact that many values very similar
— Needs to be low CPU cost for encoding/decoding

13

Compression Effectiveness

« Experiment: store contents for 2.1B page crawl in BigTable instance
— Key: URL of pages, with host-name portion reversed
+ com.cnn.www/index.html:http

— Groups pages from same site together
» Good for compression (neighboring rows tend to have similar contents)
» Good for clients: efficient to scan over all pages on a web site

« One compression strategy: gzip each page: ~28% bytes remaining
+ BigTable: BMDiff + Zippy

Type Count(B) Space(TB) Compressed %oremaining
Web contents 2.1 45.1 4.2 9.2
Links 1.8 11.2 1.6 13.9
Anchors 126.3 22.8 2.9 12.7

Summary of BigTable Key Ideas

Unstructured key-value table data
— No need for having a schema in advance
— instead create columns when needed
Versioned data, with key-specific garbage collection

Maintain data locality on same tablet

Instead of consistent hashing, reconfigure tablet
boundaries for load balancing

Tablets for lookup: key -> tablet
Efficient updates using log structure (store deltas)

2/18/16

14

BigTable in retrospect

* Definitely a useful, scalable system!

* Still in use at Google, motivated lots of NoSQL DBs

* Biggest mistake in design (per Jeff Dean, Google):
not supporting distributed transactions!

— became really important w/ incremental updates

— users wanted them, implemented themselves,
often incorrectly!

Megastore Motivation

* Many applications need transactions that span
multiple rows
— Examples: gmail, google+, picasa, ...

» Key-value store that spans multiple data centers
— Fast local reads
— At cost of slower writes

2/18/16

15

Megastore

Replicate data using BigTable as underlying
key-value store

— BigTable copy per data center
Two phase commit for multi-key transactions
— Store 2pc log as “column” in BigTable

Fast reads: in normal case, read lease
provided to all data centers

Slow writes: revoke read leases from all data
centers before performing write

2/18/16

16

