Transactions

Main Points

* Transaction concept

* Four approaches to implementing atomicity
— Careful sequencing of operations
— Copy-on-write (WAFL, ZFS)
— Journalling (NTFS, linux ext4)
— Log structure (flash storage)

 Two approaches to implementing consistency
— Two-phase locking
— Optimistic concurrency control

File System Reliability

* What can happen if disk loses power or
machine software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

* File system wants durability (as a minimum!)

— Data previously stored can be retrieved (maybe
after some recovery step), regardless of failure

Storage Reliability Problem

* Single logical file operation can involve updates to
multiple physical disk blocks

— inode, indirect block, data block, bitmap, ...

— With remapping, single update to physical disk block
can require multiple (even lower level) updates

* At a physical level, operations complete one at a
time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of
when crash occurs?

Transaction Concept

* Transaction is a group of operations

— Atomic: operations appear to happen as a group,
or not at all (at logical level)
* At physical level, only single disk/flash write is atomic

— Durable: operations that complete stay completed
e Future failures do not corrupt previously stored data

— Isolation: other transactions do not see results of
earlier transactions until they are committed

— Consistency: sequential memory model

Reliability Approach #1:
Careful Ordering

e Sequence operations in a specific order

— Careful design to allow sequence to be interrupted
safely

* Post-crash recovery

— Read data structures to see if there were any
operations in progress

— Clean up/finish as needed

* Approach taken in FAT, FFS (fsck), and many app-
level recovery schemes (e.g., Word)

FFS: Create a File

Normal operation:

* Allocate data block
* Write data block

* Allocate inode

* Write inode block

 Update bitmap of free
blocks

* Update directory with file
name -> file number

 Update modify time for
directory

Recovery:

Scan inode table

If any unlinked files (not
in any directory), delete

Compare free block
bitmap against inode
trees

Scan directories for

missing update/access
times

Time proportional to size of

disk

FFS: Move a File

Normal operation: Recovery:
e Remove filename from ¢ Scan all directories to
old directory determine set of live
e Add filename to new files
directory e Consider files with valid
inodes and not in any
directory
— New file being created?
— File move?

— File deletion?

FFS: Move and Grep

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/*

Will grep always see
contents of file?

Careful Ordering

* Pros
— Works with minimal support in the disk drive
— Works for most multi-step operations

* Cons
— Can require time-consuming recovery after a failure

— Difficult to reduce every operation to a safely
interruptible sequence of writes

— Difficult to achieve consistency when multiple
operations occur concurrently

Reliability Approach #2:
Copy on Write File Layout

* To update file system, write a new version of
the file system containing the update

— Never update in place
— Reuse existing unchanged disk blocks

* Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

* Approach taken in network file server
appliances (WAFL, ZFS)

Copy on Write/Write Anywhere

Root Inode Inode File’s Inode Array Indirect Data
Slots Indirect Blocks (in Inode File) Blocks Blocks
E { =]
H]
m]
—]
= A
H]
H]
| N]
.

Fixed
Location

Anywhere

Copy on Write/Write Anywhere

Root Inode
Slots

Inode File's
Indirect Blocks

:

o]
g -

Inode Array Indirect Data
(in Inode File) Blocks Blocks
|| o]

Y

]]

»
'E

%@
B

Update Last
Block of File

Copy on Write Batch Update

Root
Inode

New /
Root //
Inode /,

\

Root
Inode’s
Indirect

Inode

Blocks

AN

New

Indirect
Nodes of
Inode
File , 7

New

/ Data
Block of

/}

\ Inode
\
\Flle

File's File's
Indirect Data
Blocks Blocks
7 \
Y ’ New
Indirect
N()dﬁ‘ /vv
[_
»

\

A
M

/N

New
Data
Blocks

Copy on Write Garbage Collection

* For write efficiency, want contiguous
sequences of free blocks

— Spread across all block groups

— Updates leave dead blocks scattered

* For read efficiency, want data read together to
be in the same block group

— Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks

Copy On Write

* Pros
— Correct behavior regardless of failures
— Fast recovery (root block array)
— High throughput (best if updates are batched)

* Cons
— Potential for high latency

— Small changes require many writes
— Garbage collection essential for performance

Logging File Systems

* |nstead of modifying data structures on disk
directly, write changes to a journal/log
— Intention list: set of changes we intend to make
— Log/Journal is append-only

* Once changes are on log, safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

* Once changes are copied, safe to remove log

Redo Logging

Prepare

— Write all changes (in
transaction) to log

Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log

Before Transaction Start

Cache Tom = $200 Mike = $100
_
Nonvolatile Tom=$200 Mike=$100
Storage
Log:

After Updates Are Logged

CaChe Tom =5$100 Mike = $200

— —
NOnvolatIIe Tom = $200 Mike = $100
Storage Log: Tom = $100 Mike = $200

—_ I

After Commit Logged

Cache

Nonvolatile
Storage

Tom =$100 Mike = $200

—

—

Tom =$200 Mike =S$100

Log: Tom =$100 Mike = $200 COMMIT

—

Cache

Nonvolatile
Storage

After Copy Back

Tom =$100 Mike = $200

—

—

Tom=S5100 Mike = $200

Log: Tom =$100 Mike = $200 COMMIT

—

After Garbage Collection

CaChe Tom =$100 Mike = $200
— R
Nonvolatile Tom=$100 Mike =$200
Storage
Log:

Questions

 What happens if machine crashes?
— Before transaction start

— After transaction start, before operations are
logged

— After operations are logged, before commit
— After commit, before write back
— After write back before garbage collection

 What happens if machine crashes during
recovery?

Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

e Can process multiple transactions
— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log

Redo Log Implementation

Volatile Memory

) I Pending write—backs
Log—head pointer g >

. Ugpo bgd

Log—tail pointer

\ Persistent Storage
Log-head pointer | - [~ R . !
i / .V \
i i Mixed: i
. | Writeback | WB Complete | Free
ree ' Complete Committed |
| : Uncommitted :
i newer
older Garbage Collected Eligible for GC In Use Available for

New Records

Question

* Do we need the copy back?
— What if update in place is very expensive?
— Ex: flash storage, RAID

Log Structure

* Logis the data storage; no copy back

— Storage split into contiguous fixed size segments

* Flash: size of erasure block
* Disk: efficient transfer size (e.g., 1IMB)

— Log new blocks into empty segment
e Garbage collect dead blocks to create empty segments

— Each segment contains extra level of indirection
* Which blocks are stored in that segment

* Recovery
— Find last successfully written segment

Transaction Isolation

Process A

move file from xtoy
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts after
changes are logged, but
before commit?

Two Phase Locking

* Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit

Transaction Isolation

Process A Process B
Lock x, y Lock x, v, log
move file from x toy grep across x and y
mv x/file y/ grep x/* y/* > log
Commit and release x,y Commit and release x, v,
log

Grep occurs either before
or after move

Multiversion Concurrency

Achieve serializability with no locks

— Works well with distributed cache coherence

— Non-blocking!

On transaction start, pick a logical time for executing
the transaction (usually, now)

— All reads and writes execute at that logical time

— Transactions can commit “out of order” in logical time
— Requires keeping old versions of data in case needed
On transaction commit, check if versions we used in
this transaction are still valid

— If can execute transaction without violating consistency, ok
— Otherwise, abort and try again

Multiversion Conflicts

e |f a write value at time T, and any committed
transaction read (old) value after T

— With two phase locks, one or the other of us
would have needed to wait

* |f read value at time T, and any committed
transaction wrote (new) value before T

— With two phase locks, one or the other of us
would have needed to wait

* Are we guaranteed to make progress?

