
CSE 452/CSE M552 
Problem Set #1 

Due: 5pm, May 7, 2013 
 
1. In class, we described the Domain Name System (DNS) as using timeout-based 

cache validation, and replicated servers.  Updates get applied to a primary server, 
which are then propagated in the background to the other replicas.   
 
a) Give an example to illustrate why DNS is not serializable. 

 
b) Briefly justify why the Domain Name System (DNS) is eventually consistent. 

 
2. Facebook uses a three tier system for implementing its website. An array of front-

end servers interacts with web clients (each client is hashed into exactly one front-
end server); these front-end servers gather the information needed to render the 
client web page from an array of cache servers and a separate array of storage 
servers.  Hashing is used to locate which cache and storage server might have a 
particular object (e.g., a friend list, or set of postings).  The number of front-end 
servers, cache servers, and storage servers is not identical (the numbers are chosen 
to balance the workload), so in general, all front-ends talk to all cache servers and all 
storage servers. 
 
The cache servers (called memcache servers) are managed as a “lookaside” cache. 
When rendering an object on a page, the front-end first sends a message to the 
relevant memcache server; if the data is not available, the front-end (not the cache) 
then retrieves the data from the relevant storage server.  The front-end then stores 
the fetched data into the memcache server.  On update, the front-end invalidates the 
cached copy (if any) and updates the storage server. 
 
a) What semantics (serializable, eventual, inconsistent) would occur if the front-end 

first invalidates the cache, and then updates the storage server?  Briefly explain. 
 

b) What semantics would occur if the front-end updates the storage server and then 
invalidates the cache? Briefly explain. 

 
c) What semantics would occur if the front-end invalidates the cache, updates the 

storage server and then re-invalidates the cache? Briefly explain. 
 

d) An employee at Facebook suggests adding a write-token to the memcache 
server.  When a front-end wants to change a value, it sends a message to 
memcache to atomically invalidate the entry and set the write-token; subsequent 
accesses to the server stall.  The front-end releases the write-token when the 
data is updated at the server, allowing stalled accesses to proceed. What 
semantics would occur in this algorithm?  Briefly explain. 


