
CSE 452 Section 1
Umar Javed

Building Distributed Systems

● distributed components
● have to deal with failures
● Messaging Layer

○ interface with hardware
○ faulty environment
○ debugging

● written in Java

● add/change files in proj/

Reliable In-order Message Layer

● ReliableInOrderMsgLayer.java
● Reliable, in-order

delivery in the absence of failures

RIONode

RIONode

 RIOMsgLayer RIOMsgLayer

In-order Message Delivery

● Sequence Numbers, ACKS
● Time outs, retransmissions (like TCP)
● Packet Receipt: public void RIODataReceive()

RIONode

RIONode

 RIOMsgLayer RIOMsgLayer
 1 1 ACK:1

 Last delivered:0 Last delivered:1

 2

 Last delivered:2

 4 ACK:4

 out of order msgs:4

 3

 out of order msgs:

 Last delivered:4

 1 2 3 4

Packet Sending

● public void RIOSend(dst,protocol,payload)

● implementing timeout: register timeout (for each unACK)
function as a callback at a certain time

 Manager.java/Callback.java

RIONode

RIONode

 RIOMsgLayer RIOMsgLayer
 1

 unACKed Packets: 1

addTimeout(3)

 ACK:1

 unACKed Packets:

Running the Distributed System

● Environment: simulation/emulation

● Configure Topology/Events

○ configure nodes: start [n]

○ event command: [n] command

○ time: advance by 1 timestep

○ example: scripts/RIOTest

Implementing the Node Interface
● Example: RIOTester (implements

RIONode, which derives from Node)

● Node class identified at command line at

the start to the manager (sim/emu)

● commands defined in onCommand()

○ example: 'begin' in RIOTester

○ send 20 packets to the first 3 nodes

● Packet types: Protocol.java

Failure Modes

● Specified by prob in node class

○ getFailureRate, getDropRate,

getDelayRate (RIOTester.java)

● ... or by user control (command line)

○ 0: all events controlled by probs

○ 1: crashes controlled explicitly by user

○ 2: drops, 3: delay, controlled by user

Simulator (brief overview)
● Every timestep:

○ process in-flight packets
■ drop, delay, deliver
■ remove dropped pkt from in-flight queue
■ keep delayed pkt in-flight
■ schedule rest as delivery event
■ checkInTransit(currentRoundEvents)

○ schedule timeout events
■ checkTimeouts(currentRoundEvents)

○ schedule node crash events
■ checkCrash(currentRoundEvents)

Project 1: Client Server Filesystem

● 2 nodes in the system: server, client
● Simple RPC protocol
● Set of procedures for file operations (called

by client)
● Handle node failures
● commands parsed and executed by
onCommand()function in node class
○ specified in command file
○ 0 create 1 foo.txt

Simple Filesystem Routines

● flat hierarchy (no directories)
● small files (fit in one pkt, minus header)
● create server filename
● read server filename
● append server filename contents
● checkVersion server filename
● Handle incorrect operations:

○ e.g., creating an existing file
○ no file changes, error msg sent back

Handling Failure Events

● Detect crash?
● Client failures

○ crash: server still serves request
○ ignore outstanding responses

● Server failures
○ crash/drop after service execution
○ crash/drop before service execution
○ client can't know which one

Server Failure Scenarios
1) Lost Request Message

● failure before service execution

2) Lost Response

● failure after service execution

How does the client know this?

● timeouts
● resend request

Server Failure Scenarios
● Side-effects of duplicate requests

○ idempotent (can be repeated harmlessly)

■ reads

○ nonidempotent (side-effects)

■ bank transfers (writes)

● How to deal with nonidempotent duplicate

requests?

Server Failure Scenarios
3) Crash
● failure before/after service execution
● semantics for recovery:

○ at least once
■ keep trying until success
■ deal with duplicates (client)
■ idempotent operations

○ at most once
■ only one execution, or give up
■ smart server

Guiding Principles
● Correctness

○ correct action should be performed in the
absence of failures

○ if the command executes, result should be
correct

● Simplicity
○ corner cases (always)
○ e.g., no need for a 3-way handshake,

teardown
● Termination

○ OK to give up after a reasonable # timeouts

