CSE 452 Section 1

Umar Javed

Building Distributed Systems

e distributed components
e have to deal with failures
e Messaging Layer
o Interface with hardware
o faulty environment
o debugging
e written in Java

e add/change files in proj/

Reliable In-order Message Layer

e ReliableInOrderMsglLayer.java
e Reliable, in-order
delivery in the absence of failures

RIONOde RIONode

RIOMsgLayer [« > RIOMsglLayer

In-order Message Delivery

e Sequence Numbers, ACKS
e Time outs, retransmissions (like TCP)

® Packet Receipt: public void RIODataReceive ()
1 1] 2 3 || 4

RIONOde Il Last delivered:4 |l RIONOde

out of order msgs:

1 [
| ACl| 3

RIOMsglLayer [< > RIOMsglLayer

Packet Sending

® public void RIOSend(dst,protocol,payload)

® implementing timeout: register timeout (for each unACK)

function as a callback at a certain time

Manager.java/Callback.java

Timelut

|

addTimeout (3)

unACKed Packets:

RIOMsglLayer

<€

|| ACK:1

- D —

RIONode

RIOMsgLayer

Running the Distributed System

e Environment: simulation/emulation
e Configure Topology/Events

o configure nodes: start [n]
o event command: [n] command
o time: advance by 1 timestep

o example: scripts/RIOTest

Implementing the Node Interface

. Example: RIOTester (implements
RIONode, which derives from Node)

e Node class identified at command line at
the start to the manager (sim/emu)

e commands defined in onCommand ()
o example: 'begin’' in RIOTester
o send 20 packets to the first 3 nodes

e Packet types: Protocol. java

Failure Modes

e Specified by prob in node class
O getFaillureRate, getDropRate,
getDelayRate (RIOTester.java)
e ... or by user control (command line)
o 0: all events controlled by probs
o 1: crashes controlled explicitly by user

o 2:drops, 3: delay, controlled by user

Simulator (brief overview)

e Every timestep:
o process in-flight packets

drop, delay, deliver

remove dropped pkt from in-flight queue
keep delayed pkt in-flight

schedule rest as delivery event

checkInTransit (currentRoundEvents)

o schedule timeout events

checkTimeouts (currentRoundEvents)

o schedule node crash events

checkCrash(currentRoundEvents)

Project 1: Client Server Filesystem

e 2 nodes in the system: server, client

e Simple RPC protocol

e Set of procedures for file operations (called
by client)

e Handle node failures

e commands parsed and executed by
onCommand () function in node class
o specified in command file

O (0 create 1 foo.txt

Simple Filesystem Routines

flat hierarchy (no directories)

small files (fit in one pkt, minus header)
create server filename

read server filename

append server filename contents
checkVersion server filename

Handle incorrect operations:

o e.g., creating an existing file

o no file changes, error msg sent back

Handling Failure Events

e Detect crash?
e Client failures
o crash: server still serves request
o ignore outstanding responses
e Server failures
o crash/drop after service execution
o crash/drop before service execution
o client can't know which one

Server Failure Scenarios
1) Lost Request Message

e failure before service execution
2) Lost Response
e failure after service execution

How does the client know this?

e timeouts
e resend request

Server Failure Scenarios
e Side-effects of duplicate requests

o Idempotent (can be repeated harmlessly)
= reads
o nonidempotent (side-effects)
= bank transfers (writes)
e How to deal with nonidempotent duplicate

requests?

Server Failure Scenarios
3) Crash

e failure before/after service execution
e semantics for recovery:
o atleast once
s keep trying until success
s deal with duplicates (client)
» Idempotent operations
o at most once
= only one execution, or give up
s Smart server

Guiding Principles
e Correctness
o correct action should be performed in the
absence of failures
o If the command executes, result should be
correct
e Simplicity
o corner cases (always)
o €.g., ho need for a 3-way handshake,
teardown
e [ermination
o OK to give up after a reasonable # timeouts

