Eventual consistency

[I find reading old papers to be kind of cool - you see exactly how far technology has
changed. The Bayou folks had built what was essentially a pda or a smartphone, in
the early 90’s. But you can see from the paper that they needed to make a bunch of
assumptions that turned out to be non-issues: e.g., that sending data packets over
cell will be way too expensive.]

Finishing up cache coherence

At a high level, an astounding achievement. Semantics of one copy - all reads and
writes are done in a total order, but in fact there’s lots and lots of concurrency.
Potentially very many copies of data, that are made into a single copy only as
needed.

Anecdote: in our description, 3 states in write back cache coherence, but in AMD
implementation in hardware, reported that the “simple” description has more than
180 state. Why? Lots of potential corner cases we only touched on - what happens
if you get a cache lookup while the data is being fetched? Using a write buffer also
makes things more complex.

*#*Scalability of directory information: to be serializable, need to have a bit per
processor, or a list of processors caching each block. (why there isn’t cache
coherence of web pages.) We could try to scale by distributing the callback state as
a tree of callbacks.

**We mentioned that NFS allows for transparent recovery when server or clients
fail, using idempotent operations and TTL based coherence. Can we get transparent
recovery with callbacks? (Recover by asking others what server state was.)

% With callback state, a read or write must stall until the owner/read-copy replies.
[s there a way to do non-blocking cache coherence? See multiversion concurrency
control.

Distributed shared memory. I mentioned at the very end that we can implement
cache coherence, provided we can catch reads/writes to potentially shared data -
we can allow them to go forward in the common case that they aren’t shared or that
they are read-shared, but we need to be more careful with data that’s written. And
so we don’t only need to do cache coherence in hardware, we can do it in software
or even in the OS - emulating shared memory across a set of machines.

False sharing: what happens if two pieces of data are stored together? Means they
will be fetched together - great if they are used at the same time. But what if one is
modified, while the other is read-only! potential for poor performance: e.g., if one
item is being written by one CPU, and the other being written by a different CPU.

One reason you need to do automatic cache coherence at a fairly fine-grained level -
you have the potential for a lot of interference.

Started out by saying that RPC’s and cache coherence are duals of each other - you
can implement one in terms of the other.

Example:

Gradient computation - one cell has its edge condition set by its neighbors. So if
you have 100 processors, split your computation up into squares that compute
locally and only communicate with its neighbors. You can do this with RPC -
compute your local state, and send it to your neighbors. Or you can do this with
cache coherence. Which is more efficient?

They are going to be about the same, as long as we can ignore false sharing.

Each iteration, each CPU writes its boundary, and reads its neighbor’s boundary.
The write invalidates the remote cached copy; the read fetches the new value.
With an RPC, you’d just fetch the new value. Matter of taste whether its easier to
program if you can just treat your program as having shared memory.

Examples of systems that provide weaker consistency guarantees.

DNS: multiple replicas, needed for throughput - a huge number of clients reading
data from the DNS servers at the same time. E.g., for the root DNS, several hundred
replicas spread around the globe. Caching to reduce the load on the server.

How does update work? Update one replica, that replica replies, and in the
background it propagates the change to the other replicas.

Implication: may not read your own writes! Update DNS, read the value, and if you
happen to connect to a different replica, you'll see the old value!

Makes programming difficult: update, spin, check, spin, check, spin...

Might at least want local operations to appear in processor order - the order that
the processor made them. Can you version #’s to fix this: when write, get back a
token that you can use in future, please put the next read /write after this one.
Can you generalize to sets of related updates?

What about disconnected operation? How should google docs work?

Suppose one central server.

a) prefetch things you will need in future
b) allow others to change files while you are disconnected (no exclusive access)

c) log all changes to local disk - replay log preserves order of writes
d) apply log at server when connected
e) conflict resolution

Conflict resolution policy: changes appear in processor order, applied at time
when notebook reconnects.

[s that sequentially consistent? Linearizable? Does it matter?
How can we resolve conflicts?

Ex: What happens on directory updates to different files by different users? Or two
deletes followed by a create? What about different updates to different parts of the
same file by different users?

This is roughly how CVS/SVN works - fetch a copy, put updates into central
repository. Resolve conflicts by hand when merge is done.

Git/Bayou allow merges without a central master. In Bayou, idea was to be able to
merge peers that are connected with each other, but not with a central master. In
git, merge code between developers on a sub-branch, or across different sub-
branches.

Another goal: support weakly connected operation - minimize amount of
communication to do merge. For git, needed to support 10K developers
simultaneously working on Linux - many are well connected, but many aren’t.

You can think of git as a simplification of Bayou - it came 15 years later, so they
could benefit from skipping the parts they didn’t need.

Git: can split off a branch, or pull updates from any branch. Merge creates a new
version, that integrates changes on both branches.

Git: Every clone keeps entire sequence of updates from start of repository, so can
always know which updates have been applied into any specific branch.

Bayou: Goal is automatic resolution, so that everyone must use the same order of
operations. Between concurrent operations, in git, assumes you resolve any
conflicts, and so order of updates doesn’t matter when there’s no conflict.

Bayou: Conflict resolution is programmed and deterministic - each write is
provided some code to run when a conflict occurs, e.g., for a calendar program, what
to do if someone else booked the room while you were disconnected.

In Bayou, need to pick some order of a merge (should A or B get the room
reservation). Want this order to be stable! Might be that some other node, C, has an
update that gets put earlier, but that we haven’t heard about yet.

OK to exchange updates with neighbor - this defines a specific order for A, B.
However, neither is committed/stable until primary says that it is committed, since
(primary gets to resolve concurrent updates, if they haven’t been by an earlier
merge).

Ultimately, the primary decides which order to commit, but it has to decide
consistently with every other prior merge.

Example: A, B, C, D - A updates, merges with C. B updates merges with A. So now
we have B’ < A’ on A, B. on C we have A’. D modifies, merges with C. D’ < A’.
Merge D,A->D'<B’' <A’

In Bayou, this means we need to keep log of changes until write is committed, but
after that we can discard the log.

