Lecture 3, RPC continued
RPC semantics
RPC with multiple clients, multiple RPCs/client
NFS
Distributed objects
First any questions about last time? Everyone have a project team?
1) Quick review: Remote procedure call vs. procedure call
What's equivalent?
Parameters -- request message
Result -- reply message
Name of procedure -- passed in request message
return address? Source address/port in the request packet
2) Implementing RPC
at least once, easy - just retry
exactly once - two phase commit
at most once -- ?
A bit of background on the Internet: the worst possible network, except for all
others. Packets can be dropped, delivered very very late, duplicated in
transit, etc. Non-transitive connectivity is possible too.

An example: packet sent before a crash, delivered after the machine reboots

A problem! if packet was received and processed (ignore resend) vs. never
received (do operation)

Internet has two main protocols:
UDP is for simple message exchange, so the client simply sends a message,

telling the OS to fill the packet with the right server address, port. On the
server side, it replies, telling the OS to fill in the client address, port



Our interface is UDP-like, just a bit simpler. The reason for not using TCP will
become obvious later, as we'll need to use messages for implementing certain
protocols.

Note although we didn’t ask you to do it for this assignment, you will need to
be able to do RPC’s from multiple clients to the same server. That is, the
server will need to keep different conversations distinct. [More on that in a
sec.]

TCP sets up a bidirectional byte stream between two nodes. For TCP, it
actually contacts the server when you connect. This allows state to be set up
on the remote side. Hint: for at most once, you need state on the remote side
to make your RPC work!

(That is to say, even though we’re using UDP - you probably need a message
exchange to start things off, to be able to deal with failures correctly.)

[skip]
With TCP the client does:

Socket = socket(TCP)

Connect(socket, server address, port #) — exchanges start messages
Send data (socket) — do the RPC

Read data (socket) — wait for the reply

On the server side:

Socket = socket(TCP)

Listen(socket) - marks this as a server

Fd = accept an incoming connection(socket)

Read data (fd)

Do operation

Write reply on fd

[end skip]

3) What if there are multiple clients?
RPC described so far:

Client: calls local procedure

Server: loop



Wait for incoming request
Execute request

But if there are multiple clients, server will stall waiting for the client
Perhaps ok if single CPU, and requests are short

What if request goes to the file system/disk? (e.g., fetch page)
One approach (Apache): use threads and TCP
[a thread is an asynchronous procedure call]

Wait for incoming connection (fd = socket accept)
Fork thread to handle requests from that client (fd)

Each server thread has loop
Wait for incoming request (read fd)
Execute request
Reply (write fd)

Alternate approach: events

Server: loop

Get next event

Process event (send request to file system, get completion notification from
file system, get command from user)

OK, let’s make this a bit more interesting

Google instant: Type command, get the search result, but you can keep
typing, and it updates as it goes.

Does it do an RPC for every character? (sort of: unlike a procedure call, it
doesn’t wait for the reply. You can keep typing - needs to match up the
replies to what you are typing.)

Two equivalent ways of thinking about this, events vs. threads:

Loop

Wait for event to arrive

If event command from user,
Build message



Send msg
Else if event is reply from server
Unpack reply
Display result
End

Project uses events, so that we don’t need to require 451
Alternate view: threads
Loop

Wait for user to type character

Fork thread to do RPC based on characters typed so far

(actually 2 RPCs - one to get the suggested word completion, another to get
the search results)

Another thread manages the screen

Loop
Redraw screen based on results from latest RPC

4) Case study: NFS
File server, many clients using the file server

Transparent to application: it does file read/write, file system does rest
Implication: failures are transparent to application!

Design ideas:

a) portability: client/server can be different types of machines

=> RPC format is machine-independent (XDR) and file system independent
(can be implemented on server side by various types of file systems)

Q: how does the web achieve this? Contents of web requests are (usually) in
text format

b) Stateless protocol
Server can crash, restart, and system continues to work

= each RPC contains complete information to do operation



(example, no file seek; rather ReadAt)
All operations must reach disk at server before the server replies
(why?)

c) (Most) operations are idempotent
= client resends RPC until completion

Q: what happens when the client crashes?
[client can lose work, but that’s the same as before!]

Q: is delete name from directory an idempotent operation?
[what about two clients: one does delete, the other does create?]

d) file handles are unique for all time (file # (aka inode), generation #,
filesystem ID)

otherwise, couldn’t reuse a deleted file # -- a replay message might refer to
the old deleted file #, or the new file stored in its place

d) Mount as a binding step

Which server do we send RPCs to? Does client have permission to access files
on the server?

Issues (forward references to later in the course):

a) original security model assumes you can trust the client OS
b) weakly cache coherent (next week)

c) timestamps (next week): how does Makefile work?

5) Distributed Objects

How do we extend RPC to an object-oriented system? Why is RPC not
sufficient?

Can only pass copies of data structures to the client or server
for example, can you pass a C++ object?

Pass a pointer and dereference it remotely?

programmer must design a scheme for naming remote objects



for name design, we need to maintain mapping from name to object
locks: lockid_t
extents: extendid_t
files/directories: inums

Typical goals of distributed object systems:
transparent RPC for object methods
allow passing of object references as arguments
allow migration of objects (object not just located on origin server)
distributed GC, needed for remote refs

Situations in which one client might pass remote object ref to another?

Forward an email attachment on a thin link
lots of modules: shopping cart, item db, checkout, front end

first a simple call/return
0=777
o.fn("hello");
which server to send to?
what object on server?
what about "hello"?
what does RPC message contain?
how does server find the real object?
where does server-side dispatch fn come from?

what does a stub object look like?
type?
contents?
where did it come from?
is there anything special about the server-side "real" object?

is "hello" sent as a remote object ref?

how about passing an object as an argument?

ol =777
02 =777
ol.fn(02);

what must 02 look like in the RPC message?
server host, object ID
what if o1l's server already knows about 02?



how do we know if two objects are the same?
must have a table mapping object ID to ptr to 02
what if ol's server does not know about 02?
where does it get stub type, implementation?
can stub stuff be generated purely by client?

there are probably type IDs, so client can re-use stub code
an object ID must contain type ID, or an RPC to fetch it
clients and servers must have tables mapping type ID to stub code

when can a server free an object?
only when no client has a live reference
server must somehow learn when new client gets a reference
and when client local ref count drops to zero
so clients must send RPCs to server to note first/last knowledge
what if C1 passes to C2, C1 sends de-ref RPC before C2 sends ref?

what if a client crashes?
will server ever be able to free the object?



