MapReduce:
Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat
Google, Inc.

Motivation: Large Scale Data Processing

e Many tasks: Process lots of data to produce other data

Want to use hundreds or thousands of CPUs

... but this needs to be easy

MapReduce provides:

- Automatic parallelization and distribution
 Fault-tolerance

» |/O scheduling

- Status and monitoring

Model is Widely Applicable

MapReduce Programs In Google Source Tree

| | | | | | |
Mar May Jul Sep Nov Jan Mar May Jul Sep

2003 2004

Programming model

Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in key, 1in value) ->

list(out key, intermediate value)

reduce (out key, list(intermediate value)) ->
list(out wvalue)

Inspired by similar primitives in LISP and other languages

Execution

Input

Intermediate

v '
2.9 h (LX)

Grouped

Output

[[G,-m.p oy ey)

kl:v,v,vv |k

v.v | kd:vvv [kS:v

Task Granularity And Pipelining

Fine granularity tasks: many more map tasks than machines

+ Minimizes time for fault recovery
- Can pipeline shuffling with map execution
» Better dynamic load balancing
Often use 200,000 map/5000 reduce tasks w/ 2000 machines

Process Time >

User Program |MapReduce() ... wait ...

Master Assign tasks to worker machines...

Worker | Map | Map 3

Worker 2 Map 2

Worker 3 Reduce 1
Worker 4 Reduce 2

Fault tolerance: Handled via re-execution

« On worker failure:

O
O
O

Detect failure via periodic heartbeats
Re-execute completed and in-progress map tasks

Re-execute in progress reduce tasks

o Task completion committed through master
» Master failure:

o Could handle, but don't yet (master failure unlikely)
Robust: lost 1600 of 1800 machines once, but finished fine

Refinements

e Redundant Execution
e Locality Optimization
e Skipping Bad Records

- Sorting guarantees within each reduce partition
- Compression of intermediate data

« Combiner: useful for saving network bandwidth
» Local execution for debugging/testing

» User-defined counters

Experience: Rewrite of Production Indexing
System

Rewrote Google's production indexing system using
MapReduce

- Set of 24 MapReduce operations

* New code is simpler, easier to understand

- MapReduce takes care of failures, slow machines

- Easy to make indexing faster by adding more machines

Resilient Distributed Datasets

A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, lon Stoica

UC Berkeley Ia b

Motivation

MapReduce greatly simplified “big data” analysis
on large, unreliable clusters

But as soon as it got popular, users wanted more:

» More complex, multi-stage applications
(e.g. iterative machine learning & graph processing)

» More interactive ad-hoc queries

Response: specialized frameworks for some of
these apps (e.g. Pregel for graph processing)

Motivation

Complex apps and interactive queries both need
one thing that MapReduce lacks:

Efficient primitives for data sharing

N
In MapReduce, the only way to share data

across jobs is stable storage =» slow!

Examples

HDFS HDFS HDFS HDFS
i read write i read write i

Input

HDFS query 1 result 1

read

query 2 result 2

query 3 result 3

Input

Slow due to replication and disk I/O,
but necessary for fault tolerance

Go
al: |
. In-M
em
ory
Da
ta S
har

S

el & :
\\\\\\\\\\\\\\\\\\“\‘\\\\\\\\\\\

S

\\\\\\i\\\\\\\\

“g...
'\\\\\\\\\\\\\\
R

\\\\\\\\\\\\\\\‘\\\\\\\
R

Input

query <

on
pl’oe-time
cessin
g

query 2

, € G BRGS 4

3 N\
: {\{\\\\\\
s

g”,
.

query 3

Input

10-1
OOXf
aste
lﬂtha

n ne

twork/disk

but

ho

w to

get F

T?

Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?

Challenge

Existing storage abstractions have interfaces

based on fine-grained updates to mutable state
» RAMCloud, databases, distributed mem, Piccolo

Requires replicating data or logs across nodes

for fault tolerance

» Costly for data-intensive apps
» 10-100x slower than memory write

Solution: Resilient Distributed
Datasets (RDDs)

Restricted form of distributed shared memory
» Immutable, partitioned collections of records
» Can only be built through coarse-grained
deterministic transformations (map, filter, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails

RD
D
Recove ry

N \? N

on
pros_time

\M\\;\\\\\\\\ W

e
\\\\\\\\\\\\\\\\\\\\\‘\‘\\\\\\\\\\\\\\

Generality of RDDs

Despite their restrictions, RDDs can express

surprisingly many parallel algorithms
» These naturally apply the same operation to many items

Unify many current programming models

» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps: BSP (Pregel),
iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don’t

Tradeoff Space

Fine

Granularity
of Updates

Coarse

Network Memory
bandwidth bandwidth

K-V stores, : Best for
databases, @.» —» transactional

RAMCloud

workloads

HDFS

Low

Write Throughput

Spark Programming Interface

DryadLINQ-like API'in the Scala language
Usable interactively from Scala interpreter

Provides:
» Resilient distributed datasets (RDDs)
» Operations on RDDs: transformations (build new RDDs),
actions (compute and output results)
» Control of each RDD’s partitioning (layout across nodes)
and persistence (storage in RAM, on disk, etc)

Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Fault Recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDD MappedRDD
- i o
— ra ra
— ra ra
L J J

Fault Recovery Results

—_ 11 Failure happens

W 120 J PP

.q§)100 \81

+ 8o

5 ¢ 57 56 58 58 57 59 57 59
5

© 40

2

20
Illlllllll
7 8 9

1 2 3 4 5 6
Iteration

10

Example: PageRank

1. Start each page with arank of 2
2. On each iteration, update each page’s rank to

ZiEneighbors ranl<i / |neighborsi|
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmMap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Optimizing Placement

Links Ranks,

(url, neighbors) (url, rank)
<‘-§§~§““1ljom
Contribs,

l reduce

Contribs,

l reduce
Ranks,

b

1inks & ranks repeatedly joined

Can co-partition them (e.g. hash
both on URL) to avoid shuffles

Can also use app knowledge,
e.g., hash on DNS name

Tinks = Tinks.partitionBy(
new URLPartitioner())

PageRank Performance

200 171

2]

c I Hadoop

2 150

m .

E W Basic Spark
£ 100 72

v

% | Spark + Controlled
£ >0 23 Partitioning
= -

@)

Implementation

Runs on Mesos [NSDI 11]
to share clusters w/ Hadoop d """

\

Can read from any Hadoop

input source (HDFS, S3, ...) wwww

No changes to Scala language or compiler
» Reflection + bytecode analysis to correctly ship code

www.spark-project.org

Programming Models
Implemented on Spark

RDDs can express many existing parallel models
» MapReduce, DryadLINQ \
» Pregel graph processing [200 LOC]
» Iterative MapReduce [200 LOC]

» SQL: Hive on Spark (Shark)

All are based on
~ coarse-grained
operations

-

Enables apps to efficiently intermix these models

Conclusion

RDDs offer a simple and efficient programming
model for a broad range of applications

Leverage the coarse-grained nature of many
parallel algorithms for low-overhead recovery

Try it out at www.spark-project.org

