
452 Lecture 1: Introduction

Course title: Distributed Systems
(both 452 and M552)
My name: Tom Anderson
TA’s: Umar and Will

Admin: guest lecture Wed, NO SECTION Thursday
Sorry about the early morning Thursday section: I
didn’t notice it until too late to change.

I’m excited about this class, as distributed
systems is probably the most complex and difficult
topic in all of CS.

Central part of distributed systems is failures.
Google has more than a 1M machines in their data
centers. What does that mean? System has to keep
working even when some of the machines have crashed
– with 1M machines, some machine is actively
crashing all the time.

Failure is the normal case.

<Airline anecdote: 2 engines -> better, but more
downtime. With web, can’t afford any downtime!>

Failures means you can’t test your code – does your
code work in all failure cases, or just some? How
can you test that? Try a failure here, try one
there -- have to design from first principles, and
use testing only as a backstop.

Here’s an example of why your intuition is wrong.

Two generals problem. Coordinate attack on a
valley, using messages. But the messages are
unreliable – can’t be sure they get through.

Can you come up with a protocol that works?

Try it: what should we send?

Key point: problem occurs even though no message is
in fact lost.

In fact: impossible to coordinate with any finite
protocol. If you could, then you didn’t need the
last message. So there’s a shorter finite
protocol. Take the shortest one. Then the last
message wasn’t needed! Contradiction.

Can generalize: impossible to coordinate two nodes
to do some joint action, if nodes can fail and
messages can take varying amounts of time to be
delivered (e.g, because they can get dropped.)
Can’t tell if someone is failed, or just slow
because the network is slow. So any finite
coordination protocol can’t achieve both
timeliness, and correctness.

Mode of thinking is similar to that in 451 and 461
and 444, but combines the complexity of all three.

How many have taken 451? 461? 444? None of the
above?

Central part of the class is a software project: so
important you already know how to debug code.

However, you don’t need to have had 451 – many
distributed systems use threads (covered in 451),
but we’ve designed the project so you don’t need
that. Instead, project is event-driven: each node
waits for an event, processes it, and goes back to
waiting for the next event.

Complexity is in understanding how to manage a
distributed set of these event handlers, one per
node, especially when some can fail.

A key part of the class: methodology for writing

working distributed applications.

Project: to build a peer to peer twitter app.

What do I mean by that? You and some friends can
run the app, and it will do the things twitter
does: post messages, see each other’s postings,
manage lists of people following a particular
account, all in a fault tolerant fashion – that
works even if some of the machines crash.

By peer to peer without a central server.

Three steps, equally spaced.

1) client server (this week: how to do a simple
procedure call from one node to another).
“simple” -> well, what do we mean by RPC?

2) distributed transactions

3) high availability

M552 students: a fourth part of the project, open
ended

Form groups of 2-3 today; get started tomorrow.

Class cancelled last week of quarter, to give you
more time for that assignment. Stay up to date, as
that assignment is very very hard.

Course mechanics:

No textbook. Instead research paper readings. How
many of you have read a research paper?

Key is not to let yourself get bogged down if you
don’t understand something.

First half of the class: main focus of the papers
will be the algorithm.

Second half of the class: main focus of the papers
will be on the system design

Both 452 and M552 students:

Blog entry for 5 (10) papers, due at 1pm on the day
of class. We’ll pose a question for the paper, as
a starting point for the discussion.

Two problem sets, and a final.

Collaboration policy: problem sets and exams done
individually. Project done in groups. Dept policy
applies.

What is a distributed system?
 multiple computers
 interconnected
 cooperate to provide some service
 [Example: Akamai, Google, catalyst, ...]
 [Counter example: shared UNIX time-sharing
system]

Why care about distributed computing?

1. conquer geographic separation

2. build reliable systems out of unreliable
components

3. aggregate many computers for high capacity
 aggregate cycles+memory: (ThreadMarks, Dryad)
 aggregate bw (Coral, Shark)
 aggregate disks (Frangipani)

4. customize computers for specific tasks
 email server
 backup server

Challenges

1. system design
 what does the client do, what does the server
do? which servers?
 what are the right protocols?
 What are the right abstractions?

2. consistency
 shared data with multiple readers and writers

3. failures
 communication and hardware
 how do you tell the difference?
 which node is the last one to fail?

4. security
 adversary may compromise machines or manipulate
messages

5. performance
 how do we make a system fast when it needs to
coordinate across multiple machines
 network is often scarce resource
 avoid disk writes

6. variable network properties
 very slow networks, aka sensors net
 very fast networks, inside a data center
 very high latency networks, in the wide-area

7. implementation/testing
 concurrency with servers and clients
 ensuring code works despite failures

Easy to make distributed system less scalable, less
reliable, etc. than a centralized system.

Lamport's definition: a distributed system is one
where a computer you don't know about renders your
own useless.

Example for the next two lectures, and beyond!, and
the first project:

How do we build a network file system?

Any user can read/store data, process it, send back
modifications

Server or clients can fail

Simple System Design
 One server w/ disk to store directories and files
 [picture: file server, "clients", read file,
write file, create,
 etc.]

Question: who should do what?

Server stores data
Clients read/write data

Should applications know whether the data is stored
locally or remotely?

On the web: everything is remote!
For file systems though, does your text editor know
if it’s a local file or a remote file?

Can we make it transparent? E.g., app does a file
read, file system determines if its local or
remote, and returns the data.

What are the consequences if it is transparent?

Performance: local system call vs. a remote message

Reliability: what happens if the other side fails?

Next time: we’ll talk about RPC, designed to make
this work well.

Topic: consistency & protocol design
 What if user operations require multiple file
system operations?
 If I move a file from one directory to another,
does another user see intermediate states?
 What if two users move a file to the same
destination directory?

 To offload network and server probably cache
files at client
 When does a write on a client become visible to
other clients?
 Do we want it to behave like a single-machine
file system?

Topic: system design
 What happens if your file server must serve a
large community?
 What if more clients than one server can handle?
 What if more users than one server can store
files and directories?
 How to use more servers to handle more clients?
 Idea: partition users across servers
 How to do load balance of users? Statically?
Partition name space?
 What if some user need suddenly a lot more
space?
 What if some files are much more popular than
others?

Topic: fault tolerance
 Can I get to my files when some servers are down
or network fails?
 Yes: replicate the data.

 Problem: replica consistency. delete file, re-
appears.
 Problem: physical independence vs communication
latency
 Problem: partition vs availability. airline
reservations.
 Tempting problem: can 2 servers yield 2x
availability AND 2x performance?

Topic: security
 Internet provides global exposure to random
attacks from millions
 of bored studentsand serious hackers, e.g.
intrusions for spam bot nets
 How does the server know that a request is from
me?
 How is the file server protected?
 How much do i have to trust the system
administors?
 Etc.

Topic: system design
 What if we want to provide an Internet file
system?
 aggregate all computers in a gigantic file
system
 How do we need to do this?
 more failures, longer delays, multiple
administrative domains

We want to understand the individual techniques,
and how to assemble them.

