Documentation:

For additional protection and portability, my code resides in a package called pr2. The main file RWProblem imports the package and its classes.

In the main file, RWProblem, each of the three threads is created. They are each passed a pointer to the binary_semaphore, the RW_manager, and the readerlist.

My process list or reader list is constructed as a doubly linked list. The nodes are defined as one class and the header class defines the reader list itself. The header class is an abstraction that contains information such as the length, head and tail pointers of a list. Each node within the list has a pointer to the next and previous nodes. It also holds an 8 character name and time field.

I chose to use an interactive menu system for the user to interact with the writer thread. Because the system was interactive, I chose to place the writer lock in a place more appropriate to user interface design. Normally you put the lock /unlock just around the one call that uses shared data. In this case, the reader would be printing to the display as the writer was displaying the menu system or prompting the user for additional input (like the name of a process.) This was extremely annoying and made the interface hard to use. Therefore, I moved the lock further up in the code such that the writer locks as soon as the user enters the option number. At that point, the writer has the lock while the user takes their time to respond to further prompts. This method keeps the interface clear of clutter.

Additionally, for the history table, I specified an array of Strings. Each time the readerwriter adds a line of history, the line is simply stored as an entry in the String array.

Results:

I’ve attached two output logs because I thought it would be interesting to look at the outputs from two different operating system. One was Windows NT and the other was the Mac OS. I was surprised to find no noticeable difference between the two systems. The Mac OS was not made with multi-threading as was Windows NT, so I expected to see more problems on the Mac OS run. I did not see any differences which leads me to believe that the Java Virtual Machine acts as the sole scheduler and OS for all Java programs.

I’ve noted a couple of important cases on my output from the Windows NT run. The first note is Note A. This is showing how two reads had to wait until two write threads had finished execution. The first thing we do is add a process named “mark”. But at the same time the readerwriter thread takes a history reading and then schedules any processes and then calls read. We see that when the readerwriter signaled the read thread that it had to wait, because the first time that we see the values in the ready list, the “time” field has already been incremented.

In Note B, we see an example of more than one processor. We have 4 processes going and 3 processors. Note that the time field in “john”, “Jasson”, and “Mark” all changed. The next process to complete is the bryan process and has yet to be incremented.

Note C, in the history list, shows how the readerwriter thread had to wait for a read or write before it could save into the history list. This is clear because the readerwriter is called every 2 seconds. During this example interval, the time is 4 seconds. There are some examples of 3 second delays as well as the readerwriter thread had to wait on another thread.

Some testing with the sleep method within the read functions show clearly how the writer and readerwriter processes must wait on the read function to compelte. When this was done, the keyboard input was also delayed (because it was being read from within a waiting process – the waiter thread.)

Interpretation:

It appears as if the threads are scheduled in first come first serve basis. I figured that adjusting the sleep time on some reader threads would change the scheduling, however, it did not.

I was also unable to starve the writers. In order to do that, we would need an infinite loop of readers, one after another. As it is, the readers are cleared whenever a writer finishes and thus there is no process creating readers except after a write. If there was a separate process just creating reader after reader, it may be able to starve the writers.

