The underlying Java thread scheduling policy appears to be a purely round robin schedule. This can be observed in the case of each thread having a sleep time of 500. Each thread is given an equal opportunity to execute. It can be seen from the output that each the reader thread is called exactly once between incrementing the time and moving the processes on the ready list. The cycles of the reader thread result from its semaphore being triggered once by the Reader_Writer thread. This is demonstrated in the file “5processes – 1processor.txt”.

The Reader_Writer thread must have a relatively large sleep time between the end_read() and end_write() calls to the monitor. If there is a small or zero sleep time here, the Writer thread and Reader thread will starve. The Reader_Writer thread continues to loop and add to the history but the Reader and Writer threads can’t resume execution. This is demonstrated in the file “zero sleep time in reader_writer.txt”. In this run, there is no wait command after the end_read() and end_write() functions and Reader and Writer are never resumed.

Altering the sleep time in the Reader thread only affects the frequency of each thread executing. No starvation can occur by altering the sleep time in the Reader thread.

Increasing the sleep time in the Writer thread delays the user command and allows the existing processes to be execute additional cycles before the command is executed. This can be seen in the file “increased writer sleep time.txt”

Increasing the number of processors in the system has the expected result of more processes being executing in the same amount of time. Deleting a process has the expected result. The file “3 processors” demonstrates a 3-processor system executing 7 processes. The file “delete example.txt” demonstrates adding and deleting processes.

