CSE 451 Midterm Exam

November 1999

Your Name:

General Information:

This is a closed book examination, except for one 8" x 11" sheet of paper. You have 50 minutes to answer as many questions as possible. The number in parentheses at the beginning of each question indicates the number of points given to the question; there are 50 points in all. Write all of your answers directly on this paper. Make your answers as concise as possible (you needn't cover every available nano-acre with writing). If there is something in a question that you believe is open to interpretation, then please go ahead and interpret but state your assumptions in your answer.

Problem 1: (10 points)

The diagram below shows the various possible states of a thread.

(a) Label each of the six transitions between the states as either (i) possible or (ii) impossible. For each possible transition, give an example event that would cause the transition to occur.

[image: image1.wmf]Running

Ready

Blocked

(andrew graded)

running -> ready:
possible, time slice quantum expired

ready-> running:
possible, thread being scheduled

running -> blocked:
possible, P if value == 0

blocked -> ready:
possible, V if a thread is waiting

blocked -> running:
possible, Hoare signal if a thread is waiting

ready -> blocked:
impossible (really: possible, program being swapped to disk)

Problem 1b: Label the transitions that occur on lock acquire, release and condition variable signal and wait, for both Mesa and Hoare-style monitors.

[image: image2.wmf]Running

Ready

Blocked

(andrew graded) There were a sufficiently diverse set of interpretations for this problem that we gave credit to any reasonable interpretation as long as it was consistent. We were mostly looking for you to tell us Hoare threads can go from blocked to running, but for the record, here's the complete scoop.

With Mesa, everything is as you might expect:

Mesa signal causes signalled thread to go from blocked to ready

Mesa release causes thread waiting for lock to go from blocked to ready

Mesa acquire causes calling thread to go from running to blocked, if lock is busy

Mesa wait causes calling thread to go from running to blocked, plus if any threads are waiting for lock, those threads will go from blocked to ready

With Hoare, everything is pretty complex:

Hoare lock acquire is same as Mesa acquire

Hoare signal causes the signalling thread to go from running to blocked and the signalled thread to go from blocked to running.

Hoare lock release has two cases: if thread got lock from signaller, lock is given back, so thread calling release goes from running to ready and signaller goes from blocked to running. If lock releaser hadn't been signalled, same as Mesa release.

Hoare wait is similar: if thread got lock from signaller, lock is given back when thread waits, so waiter goes from running to blocked, and signaller goes from blocked to running. Otherwise same as Mesa.

Problem 2: (10 points)

SOS Manufacturing has hired you to modify your implementation of Thread:Join() to allow multiple threads to wait for the same thread (multiple Joiners). A colleague at SOS (educated at WSU!) proposed the following code to implement multi-waiter Join. Say whether it either (i) works, (ii) doesn’t work, or (iii) is dangerous -- that is, sometimes works and sometimes doesn’t. If the implementation does not work or is dangerous, explain why, and sketch how you would fix it so it does work.

class Thread {

 int numWaiters = 0;

 Semaphore finished(0), woken(0);

// called by anyone wanting to wait for a thread

void
Thread::Join() {

 numWaiters++;

 finished->P();
// wait for thread to finish

 woken->V();
 // signal child that we got it

}

// called by child thread when it is done

void
 Thread::Finish() {

 for (int i = 0; i < numWaiters; i++) {

 finished->V(); // wake up waiters

 }

 for (int i = 0; i < numWaiters; i++) {

 woken->P(); // wait for waiters to wake up

 }

 // turn interrupts off, delete thread once we're off

 // the stack, find next thread to run, and context

 // switch to it.

 (void) kernel->interrupt->SetLevel(IntOff);

 threadToBeDestroyed = currentThread;

 nextThread = kernel->scheduler->FindNextToRun());

 kernel->currentThread = nextThread;

 SWITCH(oldThread, nextThread);

}
(andrew graded) Obviously, it is dangerous to read or modify a shared variable (e.g., numWaiters) when it is not protected by a lock. A partial solution is to put a lock around numWaiters; we gave credit for this as long as you were careful to do it in both Join and Finish. However, this is not a complete solution since there is no guarantee that all of the threads that will call join have done so by the time the thread finishes. A more complete solution is to require that the thread be told in advance how many Join'ers there will be (e.g., when the thread is created).

Problem 3:
For the following two implementations of the “Bridge Crossing” problem (one using monitors and one using semaphores), say whether it either (i) works, (ii) doesn’t work, or (iii) is dangerous -- that is, sometimes works and sometimes doesn’t. If the implementation does not work or is dangerous, explain why and give a (small) fix so that it does work. Any fix to the solution using monitors must continue to use monitors, and ditto for semaphores. Be explicit about any assumptions you make as to whether the condition variables are Mesa-style or Hoare-style and/or whether the semaphore implementation enforces FIFO order for wakeups -- e.g., the thread waiting longest in P() always grabs the semaphore after a V().

Here is the original problem description: You have been hired by Caltrans to synchronize traffic over a narrow light-duty bridge on a public highway. Traffic may only cross the bridge in one direction at a time, and if there are ever more than 3 vehicles on the bridge at one time, it will collapse under their weight. In this system, each car is represented by one thread, which executes the procedure OneVehicle when it arrives at the bridge:

enum Direction (East, West);

OneVehicle(Direction direc){

 ArriveBridge(direc);

 CrossBridge(direc);

 ExitBridge(direc);

}

In the code above, direc gives the direction in which the vehicle will cross the bridge.

Write the procedures ArriveBridge and ExitBridge (the CrossBridge procedure should just print out a debug message). ArriveBridge must not return until it safe for the car to cross the bridge in the given direction (it must guarantee that there will be no head-on collisions or bridge collapses). ExitBridge is called to indicate that the caller has finished crossing the bridge; ExitBridge should take steps to let additional cars cross the bridge. This is a lightly travelled rural bridge, so you do not need to guarantee fairness or freedom from starvation.

Problem 3a: (15 points)

Here is a proposed solution to the “Bridge Crossing" problem using monitors.

enum Direction {EAST, WEST, ANY};

Condition direction, number;

Lock lock;

int cars;

Direction currentDir = ANY;

void ArriveBridge (Direction myDir) {

 lock->Acquire();

 while (currentDir != myDir && currentDir != ANY){

 direction->Wait(lock);

 }

 currentDir = myDir;

 while (cars >= MAX_CARS){

 number->Wait(lock);

 }

 cars++;

 lock->Release();

}

void ExitBridge (Direction myDir) {

 lock->Acquire();

 cars--;

 number->Signal(lock);

 if (cars == 0) {

 currentDir = ANY;

 direction->Broadcast(lock);

 }

 lock->Release();

}

(tom graded) This works with Hoare monitors, but is dangerous with Mesa monitors. (Giving the correct answer for either case was enough for full credit.) A thread arriving at a full bridge, but going the same direction as the other cars, will call number->Wait() -- at this point, it has already checked the direction, so the direction shouldn't change until it is through the bridge. With Mesa, when the thread waiting on number is signalled, it won't necessarily run immediately. If the last car on the bridge leaves before the number waiter runs, the bridge will be left in the "ANY" direction, allowing others to arrive and go through in the opposite direction.

Various solutions are possible; a simple one is to keep count of the numWaiting cars, and then in Exit to check that both cars and numWaiting must be 0 before switching directions.

Problem 3b: (15 points)

Here is a proposed solution to the same problem using semaphores.

Semaphore space(3); // limit 3 cars

Semaphore mutex(1);

enum Direction {EAST, WEST};

Direction currentDir = EAST;

Semaphore direction[Direction]; // init to 0

int activeCars = 0, waitingCars = 0;

Direction reverse(Direction myDir) {

 if(myDir == EAST) return WEST;

 else return EAST;

}

void ArriveBridge (Direction myDir) {

 mutex->P();

 if (currentDir != myDir && activeCars > 0){

 waitingCars++; // need to wait

 direction[myDir]->P(); //when wake up, ready to go!

 } else { // ok to go ahead

 currentDir = myDir;

 activeCars++;

 mutex->V();

 }

 space->P(); // make sure there is space on bridge

}

void ExitBridge (Direction myDir) {

 space->V(); // space for others to go

 mutex->P();

 if (--activeCars == 0) { //switch directions

 while (waitingCars > 0) {

 waitingCars--;

 activeCars++;

 currentDir = reverse(myDir);

 direction[reverse(myDir)]->V();

 }

 }

 mutex->V();

}
(tom graded) Deadlock results because ArriveBridge doesn't release mutex if it needs to wait for cars going the other way. Fix is simply to put mutex->V() before direction->P().

Note that this is written in the style of Hoare monitors -- the person waking up the waiter in ExitBridge is responsible for setting the state variables so the waiter can proceed.

Also note that the variable activeCars can be > 3, but space->P() prevents more than 3 from going across the bridge at any one time.

_1003352794.doc

Running

Ready

Blocked

