
Lab 2

Tips, DD, Open OH

1



Admin

● Lab 2 has 2 parts with separate design docs and due dates
○ part 2 design due 2/01 (today, no late days) 
○ part 1 code due 2/02 (with late days)
○ part 2 code due 2/09 (with late days)

● Pset/ Quiz 2 due next Friday 2/9
○ 11:59pm 
○ No late days
○ 30 Questions on Gradescope on Week 4-6 content
○ Not timed

2



Pipe Impl Hints

● Variant of the bounded buffer problem
○ producer = writer, consumer = reader

● When should a writer wait?
○ A: No room to write and still readers left
○ When should reader wait?

● What should happen when all writers are closed
○ What if sleeping readers? What should happen?
○ What new reader comes? What should happen?

3



exec(program, args): args setup

As a reminder, all programs should have the following main signature:

int main(int argc, char** argv)

argc: The number of elements in argv

argv: An array of strings representing program arguments
- First is always the name of the program
- Argv[argc] = 0

4



X86_64 Calling Conventions

● %rdi: holds the first argument
● %rsi: holds the second argument

○ %rdx, %rcx, %r8, %r9 comes next
○ overflows (arg7, arg8 …) onto the stack

● %rsp: points to the top of the stack (lowest address)

● Local variables are stored on the stack
● If an array is an argument, the array contents are stored on the stack and the 

register contains a pointer to the array’s beginning

5



Stack For User Process

argc%RDI

argv%RSI

*%RSP Return PC
argv[0]
argv[1]

[ … ]
argv[argc - 1]
argv[argc] = NULL 

Arg #0 string
Arg #1 string

[ … ]
Arg #(argc-1)string
// High addresses

// Stack grows
// down

● Since argv is an array 
of pointers, %RSI 
points to an array on 
the stack

● Since each element of 
argv is a char*, each 
element points to a 
string elsewhere on 
the stack

● Why? Alignment
● Why NULL pointer? 

Convention

SZ_2G

6

\0… (padding)



Practice Exercise 1

%RDI

%RSI

%RSP

// High addresses

TODO:
Draw stack layout and 
determine register values 
for exec called with
“cat cat.txt”

7
Stack grows down



2%RDI

argv%RSI

*%RSP

Return PC
argv[0]
Argv[1] 

“cat”
“cat.txt”

// High addresses

// Stack grows
// down

● RDI holds argc, which is 2
● RSI holds argv: the 

beginning of the argv 
array

● RSP is properly set to the 
bottom of the stack.

● The specific value of the 
return PC doesn’t matter 
(program exits from main 
without returning)

8

Practice Exercise 1: Solution

\0\0\0\0
Argv[2] = NULL



Practice Exercise 1

%RDI

%RSI

%RSP

// High addresses

TODO:
Draw stack layout and 
determine register values 
for exec called with
“kill -9 500”

9
Stack grows down



3%RDI

argv%RSI

*%RSP

● RDI holds argc, which is 3
● RSI holds argv: the 

beginning of the argv 
array

● RSP is properly set to the 
bottom of the stack.

● The specific value of the 
return PC doesn’t matter 
(program exits from main 
without returning)

Return PC
argv[0]
argv[1]
argv[2]
argv[3] = NULL

“kill”
“-9”

“500”

// High addresses

// Stack grows
// down

10

Practice Exercise 2: Solution

\0\0\0\0



exec tests

● requires pipe!

11



Part 2 Design Doc Peer Review (~10 mins)

● Get into groups of 2 and exchange your design docs for peer review
● Did you learn new cases you hadn't thought about?
● Is there anything you can help out for your peers?
● What are some unanswered questions still?

12



Lab 2 Questions

● In the slides for Lab 2 Part 2, it mentioned that part of the pipe metadata you 
need is the PID of the waiting writer but we are not sure why that is 
necessary. What is this useful for?



Lab 2 Open OH

14


